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Abstract

Participation in permissionless blockchains results in competition over system resources,
which needs to be controlled with fees. Ethereum’s current fee mechanism is implemented
via a first-price auction that results in unpredictable fees as well as other inefficiencies. EIP-
1559 is a recent, improved proposal that introduces a number of innovative features such as
a dynamically adaptive basefee that is burnt, instead of being paid to the miners. Despite
intense interest in understanding its properties, several basic questions such as whether and
under what conditions does this protocol self-stabilize have remained elusive thus far.

We perform a thorough analysis of the resulting fee market dynamic mechanism via a
combination of tools from game theory as well as dynamical systems. We start by providing
bounds on the step-size of the base-fee update rule that suffice for global convergence to
equilibrium via Lyapunov arguments. In the negative direction, we show that for larger
step-sizes instability and even formal Li-Yorke chaos are possible under a wide range of
settings. We complement these topological results with quantitative bounds on the possible
range of basefees. We conclude our analysis with a thorough experimental case study that
corroborates our theoretical findings.

1 Introduction

The emergence of decentralized, Turing-complete blockchains, such as Ethereum [18], ushered
in the possibility of creating alternative economic systems, where traditional institutions (such
as exchanges, banks, e.t.c.) are implemented in open-source code and where the state of the
system/universal computer is stored in an immutable public blockchain. The extreme versatil-
ity of such systems, at least in terms of their fundamental capabilities, naturally raises a lot
of critical design considerations as these abstract ideas are fleshed out into concrete implemen-
tations. Moreover, as participation in these systems steadily increases over time, these initial
designs face novel demands and some careful adaptation becomes necessary.

Arguably, one of the most critical real-world design decisions in Ethereum, as well as in any
other programmable blockchain, is how the protocol decides on the costs/rewards structure for
the different types of participating entities. The protocol charges users fees for having their
transactions processed by the network and included in the blockchain. These transactions fees
are typically referred to as “gas fees”. These fees are then distributed to the miners rewarding
them for dedicating computational resources to preserving the safety of the blockchain.

Ethereum’s current fee system has been recognized as an important design challenge. The
issue primarily lies on the decision to set fees by using a simple first price auction mechanism.
Effectively, all users submit their bids in regards to how much they are willing to pay to have

∗In alphabetical order.
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their transactions included in the blockchain and the miners typically select the highest priced
entries for inclusion given the block capacity constraints. Due to the non-truthful nature of first
price auctions, choosing an appropriate bidding fee is a non-trivial task and users can end up
significantly overpaying for system participation.

From a traditional mechanism design perspective, the solution to the aforementioned prob-
lem seems relatively straightforward: Replace the first price auction with either a Vickrey –
Clarke – Groves (VCG) auction [12, 17] or a (generalized) second price auction [10, 5], which
reduce the strategic complexity on the side of the bidders, lead to more efficient outcomes
and are known to work well in practice (e.g., internet advertising). Unfortunately, such ap-
proaches can be easily exploited and gamed by miners who can artificially increase demands
for their blocks, increasing the resulting fees while decreasing meaningful system participation.
Moreover, such mechanisms are vulnerable to collusion [8, 1].

Recently, a new proposal (EIP-1559) has been put forward to address these issues [4]. A key
aspect of this mechanism is the introduction of a basefee that is automatically adjusted by the
protocol depending on how congested the network is. This basefee effectively plays the role of
a reserve price, matching supply and demand. Critically, this basefee is burned, which prevents
the emergence of perverse incentives where miners can extract increased fees from the users
by acting dishonestly. Users seeking fast inclusion of their transactions can supplement the
basefee with a tip, which is the only fee that is received by the miners. An economic analysis of
EIP-1559 has identified desirable properties, e.g., it is incentive compatible for myopic miners
and as well as for users except during time periods with excessively low base fees [15]. Of course,
to provide insights about whether such conditions will be satisfied in practice an economic
analysis alone is not sufficient as one needs to explicitly analyze the dynamic evolution of the
mechanism parameters over time. This raises our driving question: Under which conditions
do the EIP-1559 dynamics self-stabilize? When these conditions are not satisfied how complex,
unpredictable can the resulting behavior be?

Our results. We perform both a theoretical as well as experimental analysis of the dynamics
and stability properties of the EIP-1559 protocol. In particular, we investigate not only sufficient
conditions for network stability and convergence to equilibrium but furthermore, we provide
for the first-time to our knowledge a stress-test type of analysis where we push the system
parameters past its stable range and prove phase transitions/bifurcations as well as the formal
onset of chaos.

Our main observation is that the basefee adjustment parameter (step-size) has a critical
impact in the stability of the system. In the theoretical part of the paper (Section 3), we
provide threshold bounds for the step-size which allow the system to stabilize (Theorem 3.6).
For larger values of the step-size (or of the other critical parameters of the system, transaction
demand and user valuations), we show that the basefee dynamics may become formally chaotic
(Theorem 3.12). However, even in this unstable regime, the basefee remains within a bounded
region and is relatively well behaved. By contrast, adverse effects are observed in the block
occupancies (which may oscillate between their extremes, full to empty and vise versa).

On the experimental side we validate our theoretical findings by showcasing high variance
periods where blocks alternate between full and empty state and basefee spikes up and down,
using a fee market simulation library with agent-based components (Section 4). We first look
at the impact of three variables on the prevalence of these high variance periods: the demand
variance, or how “noisy” the demand process is; the initial condition of the demand process,
from just enough to fill blocks entirely to twice that demand; and the tolerance of the transaction
pool eviction policy, with more tolerant pools keeping transactions even as their fee cap stands
at a lower value than the basefee. We find all three variables positively correlate with more
appearances of high variance periods, highlighting the forces inducing variance in the fee market.
We additionally find that using stricter pool eviction policies hurts user efficiency and miner
revenue, casting doubt on the incentive compatibility of this strategy to yield more stable basefee
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updates.

2 Model

Our description of the model consists of two parts. The first describes the transaction fee mech-
anism of EIP1559 with a special focus on the dynamic adjustment of the basefee (Section 2.1)
and the second describes the assumptions concerning agents’ behavior that we study in this
paper (Sections 2.2 and 2.3).

2.1 Transaction Fee Market and EIP1559

We consider a blockchain-enabled economy in which users make transactions over a distributed
network.1 Users submit their transactions to a common pool together with a bid which specifies
how much they are willing to pay for the computational resources that are required for their
transactions to be processed. The transactions, along with the bids, are viewed by the miners
who select which transactions to include in the blocks that they create. In existing mechanisms
(including Ethereum’s current economic model), bids comprise a single transaction fee. Miners
can sort the transactions and typically select the ones with the highest fees. The miner who will
include a transaction in a valid block receives the entire fee in a process that closely resembles
a generalized first price auction.

According to the proposed reform of EIP1559, bids comprise two elements (f, p): (i) the
feecap, f , which is the maximum amount that the user is willing to pay for their transaction to
be processed, and (ii) the premium, p, which is the maximum tip that the user is willing to pay
to the miner who will eventually process their transaction. In particular, a user who will get
their transaction included in the blockchain will never pay more than the feecap and the miner
who will process the transaction will never receive more than the premium.

The main element of EIP1559 and its main difference from existing mechanisms is the
stipulation of a dynamically adjusted basefee, bt, t > 0, where t denotes the block height. Every
transaction that gets included in a block Bt, t > 0 needs to pay the basefee, bt, that is valid
at that block. Instead of being transferred from the user to the miner, the basefee is burnt,
i.e., it is permanently removed from the circulating supply of the native currency (e.g., ETH).
For each included transaction, miners will receive the minimum between the premium and the
difference between the feecap and the basefee. Specifically, the miner’s tip is defined by

miner’s tip := min {f − bt, p}. (1)

Blocks have size T and, in EIP1559, a target block load T/2.2 Let gt denote the number of
transactions that get included in block Bt. Since gt depends on the basefee, bt, we will write
gt | bt to denote the transactions that get included in Bt given that the basefee is equal to bt.
The basefee is updated after every block according to the following equation

bt+1 = bt

(
1 + d · gt | bt − T/2

T/2

)
, for any t ∈ N. (2)

where d denotes an adjustment factor (or step size), currently set at d = 0.125 [14, 11]. Equation
(2) suggests that the basefee will increase if the load of block Bt is larger than the target block
load, i.e., if there is increasing demand or congestion in the system, and will decrease otherwise.

1Our analysis is based on the Ethereum blockchain. However, there are other blockchains, such as Filecoin
[16], that implement very similar mechanisms and the main ideas of our results (up to technical details) readily
extend to these settings as well.

2Size is measured in gas, i.e., typically T denotes the gas limit. Here, we express all measurements in units per
gas, so under the assumption that all transactions use the same amount of gas, one may think of T as number of
transactions.
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The magnitude of the change is regulated by the excess (shortage) of transaction load compared
to the target load (currently T/2) and parameter d. Our main goal in this paper is to analyze
the stability and properties of the dynamical system that is determined by equation (2).

2.2 Behavioral Model: Miners and Users

In general, we will assume that users (transactions) arrive to the pool according to a random
process. We will write Nt to denote the random number of transactions that arrive between
two consecutive blocks Bt, Bt+1 for t ≥ 0. We assume that Nt ∼ P(λT ) for any t ≥ 0, where
P(λ) denotes the Poisson distribution of parameter λT . To avoid trivial cases, we will assume
that λ > 1/2, i.e., that the arrival rate is larger than the target block load. For the theoretical
analysis, we will assume that users leave the pool if their transaction is not included in the next
block and return according to the specified arrival process.3 Whenever necessary, we will index
users (transactions) with i, j ∈ N.

As mentioned above, miners view all transactions in the pool along with their bids, (f, p),
and decide which transactions to include in the blocks that they mine. We assume that miners
are willing to process transactions only if the fees that they receive are at least some commonly
known ε > 0. This is due to the intrinsic marginal cost for miners to include the transaction.
For instance, each transaction increases the size (in bytes) of the block and its propagation time
over the network of miners, leading to an increase in the risk of producing a stale block (called
uncle).4 Thus, miners will select a transaction to be included in block Bt if f ≥ bt+ε, and p ≥ ε,
i.e., if the feecap is large enough to cover both the basefee and the minimum acceptable premium
for miners, and the premium is large enough to satisfy the miner’s tip. These conditions are
summarized in the following minimum inclusion requirement

miner’s tip = min {f − bt, p} ≥ ε. (3)

Finally, each user i ∈ N has a valuation vi which is drawn from some common (for all users)
distribution function v ∼ F with strictly positive support S ⊆ R+. For convenience, we assume
throughout that F is continuous and strictly increasing (i.e., non-atomic). We will write F to
denote the survival function of F , i.e., F (x) = 1− F (x), for any x ∈ R. For the most part, we
will assume that users are non-strategic, which means that they bid their valuations as feecaps,
i.e., fi = vi and that they set a premium equal to the miner’s acceptance threshold ε, i.e., pi = ε
for each user i ∈ N. In short, a non-strategic user with valuation vi, is defined as a user who
bids (f, p) = (vi, ε).

2.3 Non-Atomic Model

Based on the above assumptions, the dynamical system that is determined by equation (2)
is a discrete time, discrete space stochastic process {bt}t≥0. The source of randomness is the
term gt | bt, i.e., the number of transactions that get included in block Bt given the basefee
bt. However, for the most part of the analysis, it will be sufficient to consider a non-atomic
(or fluid) approximation of the above system. Accordingly, we will assume that there is a fixed
number of λT arrivals between each two consecutive blocks and that the fraction of users who
are willing to pay the basefee (plus the miners’ premium) is equal to λTF (bt + ε). Taking into
account that a block has a maximum size, T , the above lead to the following discrete time,
continuous space deterministic process

bt+1 = bt + bt
d

T/2

(
min {T, λTF (bt + ε)} − T/2

)
.

3This assumption only reduces unnecessary complexities in the analysis and is relaxed in the simulations
without significant effect in the results.

4It is expected for user wallets to encode this default ε in their fee estimation strategies, thus supporting
common knowledge among fee market participants. At the moment, the value of 1 nanoETH (10−9 ETH) is
recommended as such a default by the EIP itself [3].

4



which after some straightforward simplifications leads to

bt+1 = bt + btdmin {1, 2λF (bt + ε)− 1}. (4)

The analysis of the dynamical system {bt}t≥0 that is defined by equation (4) will be the main
subject of the theoretical part of this paper. In the simulations, we again employ the discrete
model described above.

Remark 1. For practical purposes, the approximation of discrete arrivals by a continuous process
is justified by the fact that gt actually denotes gas units, which offer a much larger granularity
than exact numbers of transactions. Moreover, the number of arrivals between consecutive
blocks can be considered fairly constant during stationary periods which are of interest here.
If the demand shifts to a new stationary level, then the basefee is also expected to shift to
adjust to this new level. From a theoretical perspective, the deterministic dynamical system in
equation (4) can be justified as an approximation of the sequence of conditional expectations
E[bt+1|bt] as explained in Lemma 3.1 below.

3 Analysis

Our main task in this section is to analyze the convergence and stability properties of the
dynamical system {bt}t≥0 of equation (4).

3.1 Preliminaries

As mentioned in Remark 1, our first observation is that, the deterministic dynamical system in
equation (4) can be justified as an approximation of the sequence of conditional expectations
E[bt+1|bt]. In particular, the base fee of block t+ 1 depends only on the state of block t, which
means that the stochastic process {bt}, t ≥ 0 has the Markov property.5 This allows us to
derive a closed form formula for the conditional expectation E[bt+1 | b1, b2, . . . , bt] as shown in
Lemma 3.1.

Lemma 3.1. Suppose that the number Nt of transactions that arrive to the transaction pool
between consecutive blocks Bt, Bt+1 follows a Poisson process with rate λT , with λ > 1/2 for
any t ≥ 0. Further, suppose that users valuations vi, i ∈ N are independently drawn from a
common distribution v ∼ F for some continuous and strictly increasing distribution function F
and that users are nonstrategic, i.e., that their bids satisfy (f, p) = (vi, ε). Then, it holds that
the stochastic process {bt}t≥0 of equation (2)

bt+1 = bt

(
1 + d · gt | bt − T/2

T/2

)
, for any t ∈ N.

has the Markov property and

E[bt+1 | bt] ≤ bt + btdmin {1, 2λF (bt + ε)− 1}. (5)

Proof. The Markov property is immediate from the definition of bt+1 since bt+1 is fully deter-
mined by bt and gt | bt. Thus, E[bt+1 | b0, . . . , bt] = E[bt+1 | bt] for any t ≥ 0, with

E[bt+1 | bt] = E
[
bt

(
1 + d · gt | bt − T/2

T/2

) ∣∣∣bt]
= bt

(
1 + d · E[gt | bt]− T/2

T/2

)
.

5Formally, a stochastic process Xt, t ≥ 0 is Markovian, with respect to a filtration Ft = σ(Xs | s ≤ t), if for
any fixed time t ≥ 0, the future of the process, i.e., Xt+1, is independent of Ft given Xt.
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To proceed with the calculation of the conditional expectations E[gt | bt], we define the random
variables

Xi =


1, if i’s valuation satisfies the inclusion requirement

in block Bt,

0, otherwise.

Recall from equation (3), that the minimum inclusion requirement is that min {f − bt, p} ≥ ε.
Since users bid (f, p) = (vi, ε) by the assumption that they are nonstrategic, it holds that
min {f − bt, p} = min {vi − bt, ε}. Hence, the inclusion requirement is satisfied if and only if
vi − bt ≥ ε which implies that Xi = 1{vi ≥ bt + ε}. Thus,

P (Xi = 1 | bt) = P (vi > bt + ε) = F (bt + ε), for any i = 1, 2, . . . , N.

Thus, conditional on bt, the Xi’s are independent and identically distributed (iid) with distri-
bution (denoted by) X | bt ∼ Bernoulli(p = F (bt + ε)), so that E[X | bt] = F (bt + ε). Since the
block capacity is upper bounded by T , the transactions gt | bt that will get ultimately included

in block Bt satisfy the equality gt | bt = min
{
T,
∑Nt

i=1Xi

} ∣∣∣ bt. Putting these together, we can

now upper bound E[gt | bt] as follows

E[gt | bt] = E
[

min
{
T,

Nt∑
i=1

Xi

} ∣∣∣ bt] ≤ min
{
T,E

[ Nt∑
i=1

Xi

∣∣∣ bt]}
= min {T,E[Nt]E[X | bt]} = min {T, λTF (bt + ε)}, (6)

where the inequality is due to the interchange of the minimum with the expectation and the
(second to last) equality due to Wald’s equation since the random variables Xi, i = 1, . . . , Nt

are independent of Nt. Plugging (6) in the expression for E[bt+1 | bt] above, yields

E[bt+1 | bt] ≤ bt + btdmin {1, 2λF (bt + ε)− 1},

which is the the inequality in equation (5) as claimed.

Next, we show that the dynamical system {bt}t≥0 in (4) has a unique fixed point which is
directionally stable. Before proceeding with the formal statement and its proof, we first define
the relevant terms that we will in the subsequent theoretical analysis.

Definition 3.2 (Discrete Time Dynamical System). A one-dimensional discrete time dynamical
system, {bt}t∈N, is determined by an update rule g : R→ R, so that bt+1 := g(bt). We will write

gt(b0) := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
t−times

(x),

to denote the t-th iteration of the system, i.e., the t-times composition of g with itself (when
t = 1, we will simply write g instead of g1). Accordingly, a sequence (gt(b0))t∈N is a called a
trajectory or orbit of the dynamics with b0 as a starting point. A point b∗ is called a fixed point
of the dynamics if g(b∗) = b∗. A common technique to show that a dynamical system converges
to a fixed point is to construct a function Φ : R → R such that Φ(g(b) < Φ(b) for any b ∈ R
unless b is a fixed point of g. We call Φ a Lyapunov or potential function for g.

Definition 3.3 (Directionally Stable Fixed Point). Let {bt}t≥0 be a one-dimensional dynamical
system determined by a function g : R→ R and let b∗ be fixed point of g, i.e., g(b∗) = b∗. Then,
b∗ is called directionally stable for {bt}t≥0 if for every t ≥ 0 such that bt 6= b∗ it holds that
(g(bt)− bt)/(bt − b∗) < 0 where g(bt) = bt+1 for every t ≥ 0.
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In other words, if a fixed point is directionally stable for a dynamical system, then the
dynamical system moves to the direction of that point at every iteration. To proceed, with the
formal statement that b∗ is directionally stable for the (non-atomic) base fee dynamics {bt}t≥0,
let F−1(p) := inf{x ∈ R : F (x) ≥ p} denote the inverse distribution function of F . Since F is
continuous and strictly increasing by assumption, for any p ∈ [0, 1] there exists a unique x ∈ R
such that F−1(p) = x. Moreover, under these conditions, F−1 is also strictly increasing. Using
this notation, we can prove Lemma 3.4.

Lemma 3.4. Consider the deterministic dynamical system {bt}t≥0 with

bt+1 = bt + btdmin {1, 2λF (bt + ε)− 1}.

Then, bt has a unique stationary point given by

b∗ = F−1(1− 1/2λ)− ε. (7)

Moreover, b∗ is directionally stable for any initial condition b0 > 0 and the dynamics {bt}t≥0

converge to a globally attracting db∗-neighborhood of b∗, i.e., there exists a t̄ ∈ N, so that
bt ∈ [(1− d)b∗, (1 + d)b∗] for any t > t̄.

Proof of Lemma 3.4. Let rt denote the rate of change of bt, i.e.,

rt := dmin {1, 2λF (bt + ε)− 1}.

By definition, rt ∈ [−d, d]. The process {bt}t≥0 becomes stationary if only if rt becomes equal to
0. Solving the equation r∗ = 0 for b∗ under the assumption that F is continuous and increasing
(and hence invertible and with an increasing inverse, F−1) yields the unique solution

b∗ = F−1(1− 1/2λ)− ε,

which is the only equilibrium candidate for the deterministic dynamical system {bt}t≥0. Note
that at b∗, it holds that 1/2 = λF (b∗ + ε), and hence

min {1, 2λF (b∗ + ε)− 1} = 2λF (b∗ + ε)− 1 = 0. (∗)

To see that the the point b∗ is directionally stable for {bt}t≥0, we proceed with a case discrimi-
nation on the sign of bt, t ≥ 0. Since the dynamical system is one-dimensional, this follows from
a sign analysis of rt.

• bt < b∗. Since F is strictly increasing, it holds that F (bt + ε) < F (b∗ + ε) for any bt < b∗.
Hence,

rt = dmin {1, 2λF (bt + ε)− 1} > dmin {1, 2λF (b∗ + ε)− 1} (∗)
= 0,

by definition of b∗. Hence, rt > 0, whenever bt > b∗.

• bt > b∗. Similarly, whenever bt > b∗, it will be the case that F (bt + ε) > F (b∗ + ε). Hence,

rt = dmin {1, 2λF (bt + ε)− 1} < dmin {1, 2λF (b∗ + ε)− 1} (∗)
= 0,

where the first equality in the last line follows from the observation that λ(1−F (b∗+ ε)) < T
by definition of b∗.
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Thus, it remains to show that bt can only have bounded oscillations in a db∗ neighborhood
around b∗, i.e., that the interval [(1 − d)b∗, (1 + d)b∗] is globally attracting for the dynamics
{bt}t≥0. Assume that for some t > 0, bt > b∗ and bt+1 < b∗ (if bt+1 > b∗, then by the definition
of directional stability, bt+1 will be closer to b∗ than bt and the claim follows). Then, it must
be the case that,

bt+1 = bt(1 + rt) > bt(1− d) > b∗(1− d),

since rt > −d by definition. Similarly, if bt < b∗ and bt+1 > b∗ for some t > 0, then it holds that

bt+1 = bt(1 + rt) < bt(1 + d) < b∗(1 + d),

since rt < d by definition. Thus, if |bt̄− b∗| < db∗ for some t̄ > 0, it must be that |bt− b∗| < db∗

for any t > t̄. This implies that there can only be bounded oscillations around b∗ within the
[(1− d)b∗, (1 + d)b∗] intervals as claimed.

The next natural step is to determine conditions under which the base fee converges to this
candidate equilibrium or conditions under which it does not. It is important to understand
that even if the base fee remains in the bounded region specified in Lemma 3.4, it may oscillate
there indefinitely (jumping from above to below the equilibrium value and vice versa) causing
significant fluctuations in the block load even for stationary demand. Such an instance is given
in Example 3.5.

Example 3.5. Let T = 1000, and assume a fixed number of λT = 3000 arriving transactions
per block with equally spaced valuations in [200, 230] (i.e., the valuations are not drawn from
a uniform distribution but are assumed to be deterministic and linearly spaced in this case).
Then, starting from b0 = 100, the process {bt}t≥0 has the form that is shown in Figure 1. While

Figure 1: A case with stationary demand in which the base fee, bt, oscillates perpetually around
the equilibrium value b∗ (right panel). Despite the bounded oscillations in bt, the block load
bounces between its extremes (full to empty and vise versa) (left panel).

the base fee converges to the bounded region [(1−d)b∗, (1+d)b∗] as predicted by Lemma 3.4, the
block load bounces between its extremes, i.e., from full to empty (and vise versa). Intuitively,
instabilities emerge as the number of arriving transactions with similar valuations increases.
If valuations had significant differences, then the base fee would reach a level where only the
desired T/2 would not be priced out. However, if valuations of users are similar, then the base
fee prices out (approximately) all or (approximately) none of the users at the same time. This
leads to chaotic updates of the base fee (still within the bounded region [(1 − d)b∗, (1 + d)b∗])
and as it turns out, to extreme (and undesired) oscillations in the block occupancy.

Our goal in the subsequent analysis is to formalize the observation in Example 3.5 and
determine parameter regions for λ and w such that the base fee is provably convergent, oscil-
lating or chaotic, leading to (approximately) stable block loads in the former case or significant
fluctuations in the other cases.
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3.2 Convergence to Equilibrium

For lower step-sizes, we can prove convergence of the base fee dynamics to b∗. Here, we provide
a closed form expression for the threshold under which convergence provably occurs. We remind
that in the non-atomic model the base fee bt is determined by the following dynamics

bt+1 = bt
[
1 + dmin {1, 2λF (bt + ε)− 1}

]
.

Since the miners’ premium, ε appears only in the argument of the cumulative distribution
function, F , we will eliminate it from the following computations without loss of generality
(e.g., by appropriately shifting the support of F ). For simplicity, we assume that λ = 1 so that
min {1, 2λF (bt)− 1} = 2F (bt)− 1 for all bt > 0. Under these assumptions, b∗ simplifies to b∗ =
F−1(1/2), i.e., it is the median of the distribution F . Using the above, we can now formulate
the following convergence threshold for the step-size (which holds for arbitrary distributions).

Theorem 3.6. Let bt+1 = bt[1 + d(2F (bt)− 1)], t ≥ 0 denote the non-atomic base fee dynamics
when λ = 1. Then, for any initial value b0 > 0, and any continuous and strictly increasing
distribution function, F , with support on [L,U ] with 0 < L < U , btt≥0 converges to b∗ =
F−1(1/2), for any step-size d ∈ (0, dF ], where

dF = inf
b 6=b∗

(b∗/b)2 − 1

1− 2F (b)
.

Proof. We rewrite the base fee dynamics as

bt+1 = bt [1 + d(1− 2F (bt)]

and define the function g : R+ → R+ by g(b) := b(1 + d− 2dF (b)), for any b > 0. We will prove
that

(ln g(b)− ln b∗)2 − (ln b− ln b∗)2 < 0, for any b 6= b∗.

Once this is established, the convergence result easily follows since (ln b − ln b∗)2 acts as a
potential function for the dynamics. To proceed, we rewrite the left hand side of the above
inequality as

(ln g(b)− ln b∗)2 − (ln b− ln b∗)2

= (ln g(b)− ln b) · (ln g(b) + ln b− 2 ln b∗)

= ln

(
g(b)

b

)
ln

(
bg(b)

(b∗)2

)
= ln [1 + d− 2dF (b)] · ln

[
(b/b∗)2 · (1 + d− 2dF (b))

]
.

Since F (b) is a continuous and increasing function by assumption, there are two cases:

• b < b∗: in this case, it holds that F (b) < F (b∗) = 1/2 which implies that 1 + d − 2dF (b) >
1 + d− 2d/2 = 1. Hence, ln[1 + d− 2dF (b)] > 0. Thus, to obtain the desired inequality, we
need to select d > 0 so that the term in the argument of the second ln on the right hand side
of the above equation is less than 1, i.e., (b/b∗)2(1 + d − 2dF (b)) < 1. Solving for d yields

the inequality d ≤ (b∗/b)2−1
1−2F (b) . Since this inequality must hold for any b < b∗, we obtain the

threshold

d ≤ inf
b<b∗

(b∗/b)2 − 1

1− 2F (b)
.

• b > b∗: in this case, it holds that F (b) > F (b∗) = 1/2, which implies that ln[1+d−2dF (b)] < 0.
Thus, by a similar argument as above, we need to select d > 0 so that the term in the argument
of the second ln on the right hand side of the above equation is larger than 1, i.e.,

(b/b∗)2(1 + d− 2dF (b)) > 1.

Solving for d yields the same inequality as above (note that now 1− 2F (b) < 0).
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Putting the two cases together, we have that the base fee dynamics converge to b∗ whenever

0 < d ≤ df , with dF = infb<b∗
(b∗/b)2−1
1−2F (b) as claimed.

We illustrate the result of Theorem 3.6 with an example.

Example 3.7. Consider the uniform distribution in [0, 1] with F (b) = b for b ∈ [0, 1], F (b) = 0

for b < 0 and F (b) = 1 for b > 1. Then, b∗ = 1/2 and dF is given by dF = infb6=1/2∈[0,1]
1/4b2−1

1−2b .
The minimum is obtained for b = 1 which yields the value dF = 3/4. This means that in this
case, the dynamics converge for any d < 3/4.

To see the effect of the concentration of valuations in dF , consider the parametric case with
F ∼ Uniform[L,U ] with [L,U ] = [1−w/2, 1 +w/2] for some w > 0 so that 1−w/2 > 0. Then,
F (b) = (b− (1−w/2))/w for b ∈ [1−w/2, 1 +w/2], F (b) = 0 for b < 1−w/2 and F (b) = 1 for
b > 1 + w/2. In this case, b∗ = 1 and dF is the solution of the optimization problem

dF = inf
d6=b∗∈[L,U ]

(1 + b)w

2b2
,

which is obtained from Theorem 3.6 after some trivial algebra. This is decreasing in b which
implies that the minimum is always attained at the upper bound of the support, b = 1 + w/2,

yielding the solution dF = w(4+w)
(2+w)2

. Thus, dF is increasing in w which implies that convergence

is easier (harder) as valuations become less (more) concentrated in a specific regime.

The last example suggests that for any d > 0, there exists a w > 0 (small enough) such that
the base fee dynamics will not converge to b∗ if the valuations are uniformly distributed on an
interval with range w. This raises the question of what happens in the base fee dynamics in
such cases. As we show next, for certain values of w, the dynamics not only fail to converge,
but they become provably chaotic.

3.3 Instability and Chaos

The previous convergence results critically depend on the provided thresholds. If the step-
size exceeds these bounds, then the base fee adjustment rule may lead to chaotic updates.
As mentioned above, these bounds depend on the number of arrivals, λ, and in the range of
valuations, w. If λ increases or w decreases, i.e., if the system becomes more congested or if the
valuations become more concentrated around a specific value, then the thresholds go down and
a given step-size may not be enough to guarantee convergence. In fact, as we will show, for any
step-size, there exists a (reasonably large) λ and a (reasonably small) w so that the dynamics
become chaotic.

3.3.1 Dynamical Systems and Li-Yorke Chaos

Formally, we will show that the base fee updates become chaotic in the sense of Li-Yorke [9].
If a system is Li-Yorke chaotic, then its trajectories exhibit complex behavior: uncountably
many pairs of trajectories get arbitrary close and move apart infinitely many times as the
system evolves. Furthermore, the system has periodic orbits of all possible periods. This means
that different trajectories become indistinguishable and hence, the system cannot be efficiently
simulated or cannot be predicted in practice. The notion of Li-Yorke chaos is a fundamental
notion of chaos in dynamical systems that is connected to many other definitions of chaos (e.g.,
positive topological entropy). For more discussion on these connections, particularly in the case
of game dynamics see [6]. Such chaotic behavior has recently been observed in game theoretic
settings under adaptive agents using different online learning dynamics [13, 6, 7, 2]. To give the
formal definition of Li-Yorke chaos (cf. Definition 3.10), we will first introduce some additional
notation.
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Definition 3.8 (Periodic Orbits and Points). A sequence b1, b2, . . . , bk is called a periodic orbit
of length k if bt+1 = g(bt) for 1 ≤ i ≤ k − 1 and g(bk) = b1. Each point b1, b2, . . . , bk is called
periodic point of period k.

Definition 3.9 (Li-Yorke pair [9]). LetX = [L,U ] be a compact interval in R and let g : X → X
define a discrete time dynamical system (xt)t∈N on X, so that xt := gt(x0) for any x0 ∈ X. A
pair (x, y) ∈ X with x 6= y is called a Li-Yorke pair if

lim inf
t→∞

|gt(x)− gt(y)| = 0 < lim sup
t→∞

|gt(x)− gt(y)|.

If for any x, y ∈ S with x 6=, the pair of x, y is a Li-Yorke pair, then S is called a scrambled set.

The most classic definition of chaos in the mathematics literature defines chaos as the ex-
istence of periodic orbits of all possible periods along with an uncountably large scrambled
set.

Definition 3.10 (Li-Yorke chaos [9]). Let X = [L,U ] be a compact interval in R and let
g : X → X define a discrete time dynamical system (xt)t∈N on X, so that xt := gt(x0) for any
x0 ∈ X.

The dynamical system (xt)t∈N is called Li-Yorke chaotic if it holds that:

1. For every k = 1, 2, . . . there is a periodic point in X with period k.

2. There is an uncountable set S ⊆ X (containing no periodic points), which satisfies the
following conditions:

• For every x 6= y ∈ S,

lim sup
t→∞

|gn(x)− gn(y)| > 0 and lim inf
t→∞

|gn(x)− gn(y)| = 0.

• For every point x ∈ S and point y ∈ X,

lim sup
t→∞

|gn(x)− gn(y)| > 0.

In particular S is a scrambled set.

According to [9], a sufficient condition for a system to be Li-Yorke chaotic is that it has a
periodic orbits of period 3. This will be our main tool to show that the base fee dynamics are
Li-Yorke chaotic and is stated next.

Theorem 3.11 (Period three implies chaos [9]). Let X ⊂ R be a compact interval and let
g : X → X be a continuous function. Further assume that there exists a point x0 ∈ X for which
the points x1 := g(x0), x2 := g(x1) = g2(x0) and x3 := g(x2) = g3(x0) satisfy

x3 ≤ x0 < x1 < x2 (or x3 ≥ x0 > x1 > x2).

Then, the system is Li-Yorke chaotic.

Notice that if there is a periodic point with period 3, then the hypothesis is satisfied.
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3.3.2 Li-Yorke Chaos in the Base Fee Updates

With the above terminology and notation at hand, we now return to the base fee dynamics. In
the case of the non-atomic approximation (cf. equation (4)), it holds that bt+1 = g(bt) with the
continuous map g defined by

g(b) = b+ bdmin {1, 2λF (b+ ε)− 1}. (8)

As we showed in Lemma 3.4, the dynamics will ultimately enter the bounded interval X :=
[(1 − d)b∗, (1 − d)b∗]. Moreover, it holds that g(b) = b for b ∈ X if and only if b = b∗,
i.e., b∗ is the unique fixed point of function g in X. Thus, according to Definition 3.10 and
Theorem 3.11, it suffices to show that the continuous map g : X → X has a periodic point of
period 3, i.e., that there exists a point b′ ∈ X with b′ 6= b∗, which is a fixed point of g3(b), i.e.,
g3(b′) = b′, b′ 6= b∗ ∈ X. The two panels in Figure 2 illustrate the two possible cases.

Figure 2: Orbits in the base fee dynamics bt+1 = f(bt). The left panel shows an instance in which
the base fee dynamics do not have orbits of period 3 (the graph of g(3)(b) does not intersect the
diagonal y = b, i.e., g(3)(b) does not have fixed points other than the unique fixed point of g(b)).
By contrast, the right panel shows an instance with points of period 3 (multiple intersections of
g(3)(b) and y = b). In this case, the dynamics are Li-Yorke chaotic. In both cases, the step size
is equal to d = 0.125 and the valuations are uniformly distributed in [200, 220]. The difference
is in the demand level which is higher in the chaotic case (2T in the left panel versus 5T in the
right panel).

In Theorem 3.12, we invoke Theorem 3.11 and show the more general case, that for any d,
there exists a distribution of valuations so that the system becomes chaotic.

Theorem 3.12. Let g(b) = b+bdmin {1, 2λF (b+ ε)− 1} denote the non-atomic approximation
of the update rule for the base fee dynamics (bt)t∈N. Then, for any fixed step size d > 0, there
exists a continuous distribution F of valuations, and a point b0 ∈ R, so that

g3(b0) ≤ b0 < g(b0) < g2(b0), (PO)

In particular, for any step-size d, there exists a distribution of valuations F , for which the base
fee dynamics become Li-Yorke chaotic.

Proof. The proof is constructive and proceeds by creating a specific instance of the uniform
distribution for which condition (PO) is satisfied. Then, the claim that the dynamics are Li-
Yorke chaotic follows from Theorem 3.11. To create such an instance, let F ∼ Uniform[µ −
1/2, µ + 1/2] for some µ > 0. Also, let λ = 1 and as above, assume without loss of generality
that ε = 0 (e.g., by properly rescaling the distribution F ). Based on these assumptions, it holds
that 1 > 2F (b)−1 for any b > 0 which implies that the update rule, g, of the non-atomic model
becomes

g(b) = b(1 + d− 2dF (b)).
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We will now show that we can construct a sequence of points b0, b1 = g(b0), b2 = g2(b0) and
b3 = g3(b0) with the following properties

(i) b0 ≤ µ− 1/2,

(ii) b1 = g(b0) = µ− δ, for some δ > 0 sufficiently small (to be determined later),

(iii) b2 = g(b1) ≥ µ+ 1/2.

We start by selecting an arbitrary b0 > 0 that satisfies property (i). Thus, it holds that F (b0) = 0
(since b0 < µ − 1/2 which is the lower bound of the support of the distribution of valuations)
which implies that b1 = g(b0) = b0(1 + d). Combining this with property (ii), yields the first
necessary condition, b0(1 + d) = µ− δ, or equivalently

b0 =
µ− δ
1 + d

, for some δ ∈ (0, µ), (?)

where the condition δ < µ ensures that b0 > 0 as assumed. Plugging this into property (i)
yields the condition

µ− δ
1 + d

≤ µ− 1/2⇒ 2dµ− 1− d+ δ ≥ 0. (C1)

Next, we calculate b2 = g2(b0) = g(b1). Since b1 = µ− δ = b0(1 + d), we can determine g(b1) as
follows

g(b1) = b0(1 + d)(1 + d− 2dF (µ− δ))

= b0(1 + d)

(
1 + d− 2d

µ− δ − (µ− 1/2)

µ+ 1/2− (µ− 1/2)

)
= b0(1 + d)(1 + d− 2d(1/2− δ))
= b0(1 + d)(1 + 2dδ) = (µ− δ)(1 + 2dδ),

where the last equality follows from (?). Thus, b2 = g2(b0) = (µ − δ)(1 + 2dδ) > b1 = g(b0).
Further, if property (ii) holds, i.e., if b2 ≥ µ+ 1/2, or equivalently if

(µ− δ)(1 + 2dδ) ≥ µ+ 1/2, (C2)

(which gives a second necessary condition), then it holds that F (b2) = 1. This allows us to
calculate b3 = g3(b0) = g(b2) as follows

g(b2) = b2(1 + d− 2d · 1) = b2(1− d) = b0(1 + d)(1 + 2dδ)(1− d).

Thus, b3 = g(b2) < b2 and it remains to show that b3 ≤ b0. This yields the third necessary
condition b0(1+d)(1+2dδ)(1−d) ≤ b0 or equivalently (assuming that d < 1 as it is in practice)

δ ≤ d

2(1− d2)
. (C3)

In sum, given d > 0, we need to select µ > 0 and δ ∈ (0, µ) so that conditions (C1), (C2) and
(C3) are satisfied simultaneously (note that we already used (?) in the formulation of (C1)).
This gives the system

2dµ− 1− d+ δ ≥ 0, (C1)

dδµ− dδ2 − δ − 1/2 ≥ 0, (C2)

d

2(1− d2)
≥ δ, (C3)
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Thus, if we select any δ > 0 that satisfies condition (C3), it is immediate to see, that by selecting
µ large enough, conditions (C1) and (C2) are always satisfied (since µ appears only in one term
with positive scalars). Specifically, if we solve (C1) and (C2) for µ, we obtain the (always
feasible) condition

µ ≥ max

{
1 + d− δ

2d
,
dδ2 + δ + 1/2

δd

}
, (C4)

which together with the selected δ, yields an admissible solution of the initial system. Note

that the second term inside the max is always larger than δ, since dδ2+δ+1/2
δd = δ + 1

d + 1
2δd > δ

which implies that any µ that satisfies condition (C4) immediately satisfies µ > δ as required
for b0 to be positive (and thus for b0 to be less than b1). In sum, we have shown that if
we select a point b0 ≤ µ − δ where µ, δ satisfy conditions (C3) and (C4), then it holds that
g3(b0) ≤ b0 < g(b0) < g2(b0), which concludes the proof.

Note that the construction in the proof of Theorem 3.11 was based in a favorable scenario
for stability which assumed λ = 1. For higher values of λ, the construction still applies and
in fact, chaos obtains for a much wider range of parameters (see Section 3.4). Moreover, the
selection of the uniform distribution in the proof is not binding and the proof idea applies for
arbitrary distributions. This is illustrated in the next example which concludes this section.

Example 3.13 (A Specific Instance with Period 3). Let b0 > 0 take an arbitrary value and assume
that the cumulative distribution function, F (b) of the valuations is continuous and satisfies the
following conditions: F (0.64b0) = 6/32, F (0.8b0) = 11/18, F (b0) = 11/18 and F (1) = 1.
Assume that λ = 1 and that F is rescaled so that ε = 0 (as above). Then, for d = 9/10, we have
that b1 = g(b0) = b0(1 + (9/10)(2(1− 7/18)− 1)) = 0.8b0, b2 = g2(b0) = 0.8b0(1 + (9/10)(2(1−
11/18)− 1) = 0.64b0 and b3 = g3(b0) = 0.64b0(1 + (9/10)(2(1− 6/32)− 1) = b0. We, thus, get
an example with period 3.

3.4 Bifurcation Diagrams

The previous paragraphs suggest that there are ranges of parameters for which the base fee dy-
namics converge and ranges of parameters for which they become Li-Yorke chaotic. The system
is more prone to chaotic behavior as the step-size, demand (users that submit transactions)
or concentration of valuations increase. In this paragraph, we visualize the long-term behavior
of the base fee dynamics and the transitions through the various regimes as the critical input
parameters of the system change. Again, for expositional purposes, we restrict attention to
uniform distribution of valuations on the interval [L,U ] = [210−w/2, 210 +w/2].6 The results
are shown in the bifurcation diagrams in Figure 3.

The horizontal axis of each diagram corresponds to the varying parameter, w and d re-
spectively, with all other parameters being fixed.7 The vertical axis shows the attractor of the
base fee dynamics (blue dots) for 400 updates (after a burn-in period of 100 updates) and the
[(1 − d)b∗, b∗, (1 + d)b∗] bounds. Interestingly, the transition from the stable (convergent) to
the chaotic regime does not occur by a period doubling (as is typical in most game-theoretic
applications of chaos theory) [6, 2]. For practical purposes, the important observation is that
these phase transitions occur abruptly for small changes in the parameter values.

4 Experiments

We describe here the main components and results from a simulation environment created to
replicate the Ethereum transaction fee market.

6Simulations with different distributions such as triangle distribution or normal produce qualitatively equiv-
alent results which are not presented here.

7The bifurcation diagram for parameter λ is similar and is not presented here.
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Figure 3: Bifurcation diagrams for the input parameters, w (range of valuations) and d (step-
size) of the non-atomic base fee dynamics of equation (4). Left panel: route from order to chaos
as the step-size increases. Right panel: route from chaos to order as the range of valuations
increases.

4.1 Simulation environment

4.1.1 Chain dynamics

Blocks in Ethereum are produced by miners in a random, iterative process. A block builds on
a chain of predecessors, such that the chain length always increases in time. The consensus
algorithm ensures all participants (miners and users) agree on the current head of the chain. In
the following simulations, we adopt the parameter choices of EIP 1559, namely, a gas target of
12,500,000, gas limit of 25,000,000 and update rate parameter d = 0.125.

The simulations assume that a unique block is produced at all chain heights and that all
participants receive this block with no latency. In particular, once a block is published, all users
observe the updated basefee instantly. We assume randomness in the block arrival times. In
Ethereum, block arrival times typically follow a Poisson process of rate η = 13 seconds under
the assumption of no latency.8

4.1.2 User behavior

User values v are sampled from a fixed distribution F . We assume users all send transactions
consuming the same amount of gas γ, without loss of generality. The values are expressed as
benefit received per unit of gas, thus if the user’s transaction is included, the user receives γv
utility. The parameter value γ is obtained by computing the average gas used in all blocks from
a sample period between block 10,900,000 (timestamp Sep-20-2020 03:17:06 PM UTC) to block
10,942,000 (timestamp Sep-27-2020 02:40:14 AM UTC). We then take the median of the series
of average gas used per block, rounded to the nearest multiple of 1,000, to provide a sensible γ
estimate. The procedure yields γ = 76, 000, for a maximum number of transactions in the block
equal to 328, given the gas limit of 25,000,000. User values are chosen uniformly at random in
the interval from 10 to 100 Gwei.

Users typically transact on the Ethereum chain through wallets, which provide fee estimation
and generate transaction parameters such as the gas limit and data payload (e.g., inputs and

8Average block time chart https://etherscan.io/chart/blocktime
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names of function calls for smart contract interactions). In the current, first-price auction-
based fee market, wallets typically provide fee estimation by computing statistics from historical
transaction inclusion, e.g., the median fee paid by any transaction over the last 200 blocks. While
wallet behaviors in 1559 are not currently known, we use the following design:

• When the previous block was not close to full (less than 90% gas used), the wallet sets the
fee cap parameter f to a fixed value derived from the basefee (we use three times the current
basefee) and the premium p to the commonly agreed ε miner marginal cost. We guarantee
that fee cap covers at least the premium by setting a lower bound.

• When the previous block was close to full (above 90% gas used), the wallet adds an increment
to the average tip recorded in the previous block, inducing competition between users while
basefee matches the new demand.

4.1.3 Demand process

For convenience, we introduce two time indices: s, t refer to chain heights (measured in blocks),
while k refers to simulation time (measured in seconds). As block inter-arrival times are random,
we first generate a demand process (Dk)k returning for all time indices k an integer-valued
demand volume. Dk is interpreted as “users producing transactions between seconds k− 1 and
k”.

To generate (Dk)k, we sample Brownian motion (BM) paths with initial condition D0, mean
0 and variance σ2. We obtain demand paths that feature periods of increasing and decreasing
volumes due to the randomness of the BM, yet do not explicitly have a positive or negative
trend. In addition, we simulate random “jumps” where a mass of users is generated at random
intervals, decaying over the next steps at a rate δ, to reproduce instances where an on-chain
event brings a sudden influx of new users (e.g., token sale). Formally, our demand process
satisfies at time k:

Dk = Wk + Jk; Jk = (1− δ)Jk−1 +

Mk∑
j=1

ζj · 1bκjc=k; J0 = 0

where Wk is a discretized Brownian motion (in this case, a random walk with normal increments
of mean 0 and standard deviation σ); Mk is a Poisson process of rate λj evaluated at time k;
ζj is an exponential random variable of mean B0, modelling a demand jump; and bκjc is the
time index where the j-th jump occurred. Figure 4 depicts the sample paths for one value of
demand variance and initial condition.

4.1.4 Transaction pool behavior

Miners run Ethereum nodes exchanging data (including transactions) with other nodes over
a peer-to-peer network. Nodes are either run by miners, users or third parties, to relay this
data in a decentralized fashion. A user either directly sends their transactions from their own
node or indirectly from a third party node, who receives the transaction from the user via some
communication protocol.

While only miner nodes eventually produce blocks, all nodes feature a transaction pool
that holds pending transactions and continuously receives or sends items to other nodes, as
requested. All nodes are free to decide in practice which transaction pool policies to apply,
including the choice of the maximum number of pending transactions held in the transaction
pool at any point in time. Geth, Ethereum’s dominant node client as of February 2021, holds
by default a maximum of 4096 transactions in the pool.9

9See https://geth.ethereum.org/docs/interface/command-line-options for defaults, https://www.

ethernodes.org/ for client statistics.
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In our simulations, we abstract this peer-to-peer network of transaction pools with differing
policies into one logical transaction pool, which instantly receives all user transactions, applies
the same pool policy at all time steps and is used by all miners to form their blocks. The
possibility that various pool policies will affect transaction transmission is not considered.

4.1.5 Miner behavior

Much like the logical transaction pool described above, we also consider a single logical miner
representing all miners who produce blocks. [15] provides evidence for the incentive - compati-
bility of miner myopic strategies, who maximize greedily the available fees at the time of their
block production. Thus, we do not consider the possibility of long-range attacks in our simula-
tions, where a cartel of miners colludes to lower the basefee to zero to enforce a monopolistic
price of entry. Given the set of pending transactions in the pool, miners order transactions by
received tip (in decreasing order) and include as many transactions as possible, until the block
limit is reached or there are no more valid transactions to include.

4.1.6 Simulation steps

We provide below a description of a single simulation step, articulating how the various com-
ponents are employed.

1. The previous block Bt−1 produced at chain height t− 1 is received by all participants.

2. An inter-arrival time ηt is sampled from an exponential distribution of mean η = 13, such
that the block at height t is created at time index θt =

∑t
s=1 ηs.

3. Given the demand process (Dk)k, where k is an index over seconds, we obtain Nt =∑θt
k=θt−1

Dk. Nt is the number of users entering the market between blocks t − 1 and t,
included at the earliest in block Bt.

4. The Nt users observe the current chain state (e.g., the basefee level) and decide whether or
not to transact. User transactions are formed via wallets which encode shared strategies.

5. Transactions are received by miner transaction pools, which hold a set of pending transactions
from previous simulation steps. All the while, transaction pools apply eviction policies in
order to manage their limited resources.

6. The miner producing Bt selects transactions from the pool to maximize their fees. The set
of selected transactions must be smaller than the block limit.

7. Repeat from step 1.

4.2 Simulation results

4.2.1 Independent and dependent variables

We focus our attention on three independent variables:

• The demand path variance σ2: We choose σ ∈ {0.1, 0.5, 1.0}.

• Initial condition of the Brownian motion D0: Given the mean block inter-arrival time η, we
select D0 to reproduce conditions of low, medium and high demand. With D0 set to T

γη , we
target a user arrival rate that on average is exactly enough to fill the block to its limit (i.e.,
to twice its target). Thus we select D0 ∈ { Tγη , 1.5

T
γη , 2

T
γη}.
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Figure 4: Demand paths at standard deviation σ = 0.5, D0 = 2 T
γη .

• Transaction pool eviction tolerance τ : size of the eviction band, i.e., evict all transactions
with fee cap smaller than (1 − τ) times basefee. τ = 0 is the strictest policy (remove all
transactions with fee cap smaller than current basefee), τ = 1 is the most permissive (keep
everything, modulo the pool limit size). We choose τ ∈ {0, 1/3, 2/3, 1}.

We sample 20 Brownian motion samples (see Figure 4). Each sample yields nine distinct
paths, one for each value of standard deviation σ and initial condition D0, i.e., 180 paths. For
each path, one simulation is run for each value of τ , yielding 720 sample runs. Each run consists
of 600 blocks, representing approximately half a day of activity on Ethereum. The first 100
blocks of each run are discarded from the analysis, as they represent initial conditions where
basefee has not yet matched the existing demand.

Our dependent variable measures the variance of recent realisations of the percentage of gas
used by the block. In Section 3, chaotic behavior obtained rapid variations of the gas used,
from mostly empty block to mostly full blocks. Experimentally, we measure a moving standard
deviation of the series of gas used, with window size 4. The maximal standard deviation s∗ is
achieved whenever the four values alternate between 0 and 100. We call high variance time steps
where the moving standard deviation is at least 95% of s∗. The percentage of high variance
time steps among all simulation steps is our dependent variable.

4.2.2 Higher variance, higher initial demand and more permissive pool policies
increase high variance periods

We reproduce in Figure 5 the percentage of high variance steps averaged over sample runs for
each single value of treatment variables. We observe consistent increases in high variance steps
as the demand variance increases, the initial demand level increases or the pool eviction policy
is more permissive, as evidenced by the two samples presented in Figure 6.

The pool eviction has the sharpest contrast between levels of the variable. While high
variance steps almost never occur with the strictest pool policy (never keeping a transaction
with fee cap inferior to the current basefee), even a mild increase of the tolerance to 1/3 induces
a level of high variance steps comparable to any further increase of the tolerance.
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Figure 5: Percentage of high variance simulation steps with changing demand variance, initial
condition and transaction pool eviction tolerance.
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Figure 6: Two sample runs, one per row, with line plots for basefee, number of included trans-
actions and transaction pool length. High variance periods are represented by red bars in the
background. The first sample has D0 = T

γη , σ = 0.1, τ = 0 and features few high variance

periods. The second sample has D0 = 2 T
γη , σ = 1, τ = 1 and features more high variance

periods. Additionally, the transaction pool is continuously full, as the pool eviction policy is
most permissive.

4.2.3 Stricter pool policies trade-off user efficiency and miner revenue

In the simulations, user values are randomly sampled from the uniform distribution, with the
randomness seeded by the index of the Brownian motion (BM) sample, such that runs with
identical demand paths, demand variance and initial condition generate the same users. This
allows for comparison of two more dependent variables, user efficiency and miner revenue,
given the band width τ as independent variable and controlling for demand variance and initial
conditions.

User efficiency measures the total benefits received by all users included in the chain. EIP
1559 is efficient whenever users with the highest value are included on-chain.10 Miner revenue
consists of the received tips, either at the marginal cost level 1 Gwei per gas unit or higher
whenever users are competitively bidding.

An experiment is represented by a choice of triple (BM index, demand variance, initial
condition), with the band width τ taken as the independent variable. In all experiments,
increasing the band width decreases both the user efficiency as well as miner revenue. This
result is explained by the dynamics of the pool itself. By keeping transactions that are not
currently valid for inclusion, miners have “inventory” to spend whenever demand is low and the
basefee has decreased enough to make the transactions valid. This inventory however represents
a danger to the stability of the basefee, as a bottleneck of transactions may accumulate in the
pool, all becoming valid at the same instant and provoking basefee spikes and instability.

10In this work, we do not consider users with time preferences.
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5 Conclusions

Ethereum’s improvement proposal (EIP) 1559 is aiming to transform the transaction fee mar-
ket of the Ethereum blockchain via a dynamic pricing mechanism. The core element of the
mechanism is a fixed-per-block network fee (termed basefee) that is burned and dynamically
expands/contracts block sizes to deal with transient congestion [4]. Our goal in this paper was
to stress-test the basefee both theoretically and experimentally and understand its effects on
regulating the transaction fees and block occupancies.

A concrete outcome of both our theoretical and experimental analysis is the importance of
the basefee adjustment parameter in the performance of the mechanism. Our findings provide
insights about the conditions under which the basefee self-stabilizes but also characterize ex-
treme operational scenarios under which its dynamics become chaotic. In particular, we showed
that EIP1559 has promising properties (convergence guarantees under various conditions) to
convey stability to the fee market and identified sources of concern that may destabilize the
system into regimes of chaotic behavior. Our work develops a systematic framework that com-
bines elements from mechanism design, dynamical systems and chaos theory and which aims to
aid the ongoing study of transaction fee markets in blockchain-based economies.
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