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Abstract. Recent progress on NFS imposed a new estimation of the security of pairings. In this work we study the
best attacks against some of the most popular pairings and propose new key sizes using an analysis which is more
precise than the analysis in a recent article of Menezes, Sarkar and Singh. We also select pairing-friendly curves for
standard security levels.

Introduction

Pairing based cryptography has been introduced in the beginning of the century allowing new protocols that could
not be realized otherwise such as identity based cryptography [BF01], short signature schemes [BLS04] or broadcast
encryption [BGW05]. It has now many more practical applications in various fields. A pairing is a non degenerate
bilinear map

e : G1 ×G2 → G3.

It is usually realized thanks to elliptic curves. More precisely, the groups G1 and G2 are subgroups or quotient groups
of an elliptic curve defined over a finite field Fq or one of its extensions and G3 is a subgroup or a quotient group
of F∗qk where k is called the embedding degree. A suitable pairing for cryptographic applications requires that the
discrete logarithm problem is sufficiently difficult on these three groups. The security of pairings defined over Fq having
embedding degree k and group order r is determined by:

1. the cost of the discrete logarithm problem (DLP) on an order r subgroup or quotient group of an elliptic curve
defined over Fq (the curve side);

2. the cost of the DLP in a quotient of the multiplicative group of Fqk (the finite field side).

The security evaluation on the curve side is simple: if s is the desired level of security, we select r such that log2 r ≥ 2s
because of Pollard’s rho algorithm (and by consequence log2 q ≥ 2s).

Attacks on the field side however are harder to estimate since the best algorithms belong to the Index Calculus family
and their complexity is hard to write down explicitly. The recommended key sizes can be found in the reports of the
standardization organizations : ISO [ISO15] , IEEE [IEE17]. The NIST hasn’t standardized pairing-based cryptography
but it published reports [MPP+] which do specify key sizes. The recommendations of ECRYPT [Sma12], which were
published by ENISA [NA13], corroborate with those of the ISO, the IEEE and the NIST.

Since 2013 there have been a series of attacks on the field side of pairings of small characteristic which completely
invalidated the use of these pairings. The classical algorithms, Coppersmith [Cop84] and the function field sieve [Adl94],
[AH99], [JL02], [JL06], were replaced by algorithms of smaller complexity [Jou13a], [Jou13b], [GGMZ13b], followed
by a heuristic quasi-polynomial algorithm [BGJT14]. ENISA reacted immediately and in its standard document from
October 2013 [NA13, page 32] the agency forbid the use of small characteristic pairings. Improvements and records con-
tinued [GGMZ13a], [AMORH15], [JP14] and a second quasi-polynomial algorithm was proposed [GKZ14b,GKZ17].
Two record computations broke 128-bit pairings in characteristic 2 [GKZ14a] and respectively 3 [ACMC+16].

In the case of non-small characteristic the best-known algorithm is the number field sieve [Gor93], [Sch93], [Sch00],
[Sem02], [JL03], [CS06], [JLSV06]. Since 2013 there have been a series of new variants and improvements [JP13],
[BP14], [BGGM14], [BGGM15a], [Pie15], [SS16c,SS16d,SS16b], [BGK15] and record computations [BGGM14],
[BGGM15b], [GMT16], [FGHT17] and [KDL+16]. The extended tower number field [KB16,JK16] changed consider-
ably the complexity of the attacks and a precise analysis in the same article of a popular pairing, Baretto-Naehrig of 128
bits of security, showed that the key sizes must be reevaluated.



The implementation of SexTNFS requires to code from scratch a subprogram which can be called ”sieving in higher
dimension”. The first implementations of this subprogram [Zaj10], [HAKT15] and [GGV16], were all accompanied
by algorithmic improvements, and the latest was used in a record computation [GGMT17]. The CADO-NFS software
package [BGI+14] has a branch called nfs-hd which corresponds to sieving in higher dimension, but it could take years
before its development is finished (CADO-NFS has more than 200000 lines of code and its development has already
lasted 10 years, with continuous improvements in all the stages of NFS).

The goal of this paper is to give a precise evaluation of the complexity of these algorithms in the absence of
computational records. In the case of pairings, where the characteristic of the base field is parametrized by a polynomial,
we obtain parameters sizes for the 128, 192 and 256-bits security levels and propose pairing-friendly curves which have
this security. We compare our analysis to that of a contemporaneous article of Menezes, Sarkar and Singh [MSS16].
The cost of an attack with SexTNFS depends on the size of the norms of the algebraic numbers in the sieving domain.
The two analysis differ in the way in which the size of the norms is estimated : in their approach the mathematical upper
bound is used whereas we rely on the experimental values.

Roadmap. After explaining the necessity of a new and more precise evaluation of key sizes in Section 1 we recall
the most popular families of pairings in Section 2 and identify the best variant of NFS that an attacker can use against
these families in Section 3. Then we estimate the best parameters by seeing it as an optimization problem (Section 4).
At the end of the same section we explain the difference between the analysis of [MSS16] and that of this work. The
proposal of new curves is done in three steps: first we solve the optimization problem on the precise case of the most
popular pairings families and find what are the field sizes which correspond to 128, 192 and 256 bits of security
(Section 5), then we search for curves of this size (Section 6) and finally we do an analysis even more precise than
before for each of the curves we propose (Section 7). We conclude the article by estimating the complexity of an optimal
ate pairing for the new curves proposed for 128 bits of security (Section 8).

1 Big lines of NFS and a simple estimation of complexity

Whether the goal is to factor a composite integer N or to compute discrete logarithms in a field of pn elements, NFS
works in a similar manner. We select a number ring Zi, which is simply Z when factoring and is such that p is inert for
discrete logarithms. Then we select two polynomials f, g ∈ Zi[x] having a common factor ϕ modulo q, where q = N
for factoring and q = p for discrete logarithms. This allows to draw a commutative diagram which is the core of NFS:

Zi[x]

Zi/〈p, ϕ(x)〉 or Z/NZ

Z[αf ] ⊂ Of Zi[αg] ⊂ Og

x 7→ αf x 7→ αg

mod 〈p, ϕ(αf )〉 mod 〈p, ϕ(αg)〉

where αf and αg are roots of f and g in their number fields and where Of and Og are the rings of integers of these
same number fields.

The algorithm starts with a stage in which small polynomials φ(x) are enumerated and put in the top of the diagram.
What a small polynomial is changes from variant to variant but the degree and the coefficients are small, the simplest
example being φ(x) = a− bx with integers a, b smaller in absolute value than some parameter. If φ(αf ) and φ(αg)
are B-smooth for a parameter B (factor into ideals of norm less than B) then we obtain a multiplicative relation
in Zi[x]/〈q, ϕ〉. At this step the two variants of NFS split: either one transforms multiplicative relations into linear
equations and computes a right kernel to obtain a large number of discrete logarithms or one writes a matrix of valuations
and computes a left kernel to obtain a non-trivial solution to the equation x2 ≡ 1 mod N . In both cases one finishes
with a step of negligible cost.
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The classical variant of NFS has complexity LQ[64]1+o(1) where Q = N or pn and

LQ[c] = exp
(
(c/9)

1
3 (logQ)

1
3 (log logQ)

2
3

)
.

Each of the variants of NFS requires its own complexity analysis but it is always of the form LQ[c]
1+o(1) for

some constant. Joux and Pierrot [JP13] invented a method of polynomial selection which obtains c = 32 for some
finite fields where the characteristic p has a special form. Barbulescu, Gaudry, Guillevic and Morain [BGGM15a]
proposed new methods of polynomial selection which achieve c = 48 in some cases that are intractable with the
previous method. Later Barbulescu, Gaudry and Kleinjung [BGK15] proposed to replace Z by a larger number ring
Zi and also obtained c = 32 for some finite fields, in particular proving that a popular pairings curve estimated to
128 bits can be the target of this variant. Finally, Kim and Barbulescu [KB16] showed how to use the new methods
of polynomial selection together with the new choices of Zi and obtained c = 32 for a very large range of finite
fields. It is reassuring to note that one can give arguments that one cannot go below the c = 32 constant (cf. Appendix B).

o(1)-less estimation. What is the impact of these new constants in the complexity on the real-life security ? To get
a first idea one can start by dropping the o(1) term, so that the cost of each variant of NFS is 2κLQ[c] where κ and c
are two constants. We use the same convention as in [Len01a, Section 2.4.6] and count a clock cycle as one operation.
Thanks to real-life record computations we have a relatively good estimation of κ as summarized in Table 1 and we
conclude on the security estimations in Figure 1. For those fields where the fastest variant applies it seems that we have
to use 5004 bit fields for 128 bits of security and 12871 for 192 bits of security.

variant classical NFS classical MNFS composite n NFS composite n MNFS SNFS
c 64 61.93 48 45.00 32

κ −8[KDL+16] −8 [KDL+16] −7[BGGM15a] −7 [BGGM15a] −7[AFK+07]

Table 1. Value of κ to match the formula cost(NFS)=2κLQ[c]
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Fig. 1. Modification of key sizes according to the o(1)-less formula.

Note that the previous analysis is very similar to that of [MSS16, Section 6.2], but they didn’t consider the curve
corresponding to SexTNFS as they argue in Remark 4..
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The goal of this article is to go beyond the o(1)-less estimation and to study in each case what is the best variant of
NFS which applies, concluding on new key sizes. This type of estimations seem to be rare but we can note the works of
Lenstra [Len01b] and of Bos et al. [BKK+] who evaluate the security of RSA, DSA and DH.

2 Families of pairing-friendly curves

Depending on the required embedding degree, some families of curves have been built [FST10]. We recall here the
most popular ones.

2.1 BN curves

A BN curve [BN05] is an elliptic curve E defined over a finite field Fp, p ≥ 5, such that its order r and p are prime
numbers parametrized by

p = 36u4 + 36u3 + 24u2 + 6u+ 1,

r = 36u4 + 36u3 + 18u2 + 6u+ 1,

for some well chosen u in Z. It has an equation of the form y2 = x3 + b, where b ∈ F∗p. BN curves have an embedding
degree equal to 12. They were widely used for the 128-bit security level until the recent results on the discrete logarithm
problem in F∗p12 . Indeed, a 256-bits prime p leads to a 256-bits curve and to pairings taking values in F∗p12 , which is
a 3072-bits multiplicative group. Both groups involved are then supposed to match the 128-bit security level accord-
ing to the NIST recommendations [oSN12] (which are however now invalidate by [KB16]). Incidentally, BN curves
have been the object of numerous recent publications ([DSD07,AKL+11,CSF+11,GSNB11,NNS10,GAL+13,UW14]).

Finally, BN curves always have order 6 twists. If ξ is an element which is neither a square nor a cube in Fp2 , the
twisted curve E′ of E is defined over Fp2 by the equation y2 = x3 + b′ with b′ = b/ξ or b′ = bξ. In order to simplify
the computations, the element ξ should also be used to represent Fp12 as a degree 6 extension of Fp2 (Fp12 = Fp2 [γ]
with γ6 = ξ) [DSD07], [LN97].

2.2 BLS curves

BLS curves were introduced in [BLS03]. They are also defined over a parametrized prime field Fp by an equation of
the form y2 = x3 + b and have a twist of order 6 defined in the same way as BN curves. Contrary to BN curves, they do
not have prime order but their order is divisible by a large parametrized prime r and the pairing will be defined on the
r-torsions points. They are available for different embedding degrees but we are only interested here by the BLS12
and BLS24 families having embedding degrees 12 and 24 with respect to r. Until now, they were used for the 192-bis
security level [AFCK+13]. The parametrizations are given by

BLS12 BLS24
p = (u− 1)2(u4 − u2 + 1)/3 + u p = (u− 1)2(u8 − u4 + 1)/3 + u
r = u4 − u2 + 1 r = u8 − u4 + 1.

2.3 KSS curves

KSS curves are also available for different embedding degrees [KSS08]. If the required embedding degree is 18, this is
very similar to BLS curves (same defining equation, degree 6 twist, parametrized primes p and r|#E(Fp)). In this case,
the parametrization is given by

p = (u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u+ 2401)/21

r = (u6 + 37u3 + 343)/343.
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If the required embedding degree is 16, the KSS16 curves are defined over a parametrized prime field Fp by an equation
of the form y2 = x3 + ax and have a twist of order only 4. Again they do not have a prime order but it is divisible by a
parametrized prime r and the pairing will be defined on the r-torsions points. In this case, the parametrization is

p = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125)/980

r = (u8 + 48u4 + 625)/61250.

Whatever the family, a curve is always obtained by finding a parameter u such that both p and r are prime numbers. The
curve and its twist are generated by finding suitable coefficients which can usually be chosen small. More details on the
generation process are given in Section 6.

2.4 Optimal ate pairing

There are several available pairings (Weil, Tate, ate, R-ate, ...) but the most efficient pairing is always the so-called
optimal ate pairing [Ver09]. Let us recall this pairing in the context of ordinary elliptic curves defined over prime fields
and more precisely in the case of the considered families.
Let E be an elliptic curve defined over the prime field Fp. Let r be a prime divisor of #E(Fp) and k the embedding
degree relatively to r. We also assume that r2 - pk − 1 to ensure the non-degeneracy of the pairing. Let Ẽ be a degree d
twist of E defined over Fpe where e = k/d [HSV06]. The optimal ate pairing is defined over G1 ×G2 and takes its
values in G3 where

– G1 is the set of rational points on E of order r.
– G2 is the image of Ẽ(Fpe)[r] in E(Fpk) by the twisting isomorphism.
– G3 is the order r subgroup of F∗pk

For the considered parametrized curves, the optimal ate pairing of P and Q is mainly made of 2 parts. The first one
(usually called the Miller loop) is the computation of fu,Q(P ), where u is (usually) the family parameter and the second
one is an exponentiation to the power pk−1

r . Assuming `A,B denotes the line through points A and B, the precise
pairings are given in Table 2 [HSV06,Ver09].

Curve Miller loop of P and Q final exponent

BN f6u+2,Q(P ) · `[6u+2]Q,[p]Q(P ) · `[6u+2+p]Q,[p2]Q(P ) (p12 − 1)/r

BLS12 fu,Q(P ) (p12 − 1)/r

KSS16
(
fu,Q(P ) · `[u]Q,[p]Q(P )

)p3 · `Q,Q(P ) (p16 − 1)/r

KSS18 fu,Q(P ) · f3,Q(P )p · `[u]Q,[3p]Q(P ) (p18 − 1)/r

Table 2. Optimal ate pairings

3 The spectrum of possibilities for an attack on the field side

An attacker who uses an algorithm of Index calculus type can make a series of choices : decide which algorithm and
variant to use, make practical improvements, select polynomials, and optimize the main parameters. In this section we
explain what are the reasonable choices for an attacker and give arguments to eliminate other choices.

5



3.1 Choice of algorithm

Let us make a list of the algorithms which can be implemented on a classical computer.
We discard the FFS algorithm [Adl94,AH99,JL02,JL06] and its pinpointing variant [Jou13a] by estimating the size

of the factor base. Indeed, when the target is Fpk , the factor base of FFS is formed of all the monic polynomials Fp[x]
of degree less than a parameter b. This has been confirmed by implementations of FFS [JL06,HSW+10,HSST12] and
pinpointing [Jou13a,SS16a]. Hence the factor base has at least p elements and then the linear algebra step has a cost of
at least p2 operations, which is more than the security on the curve side evaluated to p

1
2 operations.

We also discard the MNFS variants, i.e. the variants of NFS in which more than two sides are used. Indeed, the
asymptotic complexity is close to that of NFS ([KB16, Table 2] so the “o(1)-less” extrapolation leads us to results
which are similar to those of the classical case (see Figure 1). Detrey [Det14] and Lenstra and al. [KBL14] made
proof-of-concept implementations of FFS and NFS for factoring, which are similar to NFS for discrete logarithms.
Their results seem to show that the crossing point between classical and MNFS variants of NFS is around 1000 bits, but
the gain is small, say less than 2 bits of security, so that we can ignore it in this article.

The three variants of NFS, classical [Gor93,Sch93,JL03], TNFS [Sch00,BGK15] and JLSV [JLSV06], can be seen
as particular cases of exTNFS [KB16], which remains the only algorithm to consider.

When p can be written as P (u)/v, for some polynomial P ∈ Z[x] and some integers u and v (as it is the case
for pairing applications), the polynomial selection is done differently and one of f and g has small coefficients. To
emphasize this difference we give a different name to the algorithm by adding the letter S: the “special” variant of NFS
is called SNFS, the special variant of exTNFS is called SexTNFS, the corresponding variant of TNFS is STNFS and
the special variant of JLSV will be called S-JLSV or simply Joux-Pierrot. This case encompasses but is not restricted
to low-weight primes p, e. g. in an article [Sch10] discussing the complexity of NFS on numbers which are midway
between having a general form (NFS) and a polynomial form.(SNFS), these numbers are described as ”low weigh
numbers”.

In order to fix the notations we recall the SexTNFS algorithm [KB16]:

1. Polynomial selection. Given a parameter η, chosen among the divisors of n, one selects a polynomial h ∈ Z[x] of
degree η which is irreducible modulo p. Then one selects two polynomials f and g in Z[t, x] so that f mod 〈h(t), p〉
and g mod 〈h(t), p〉, seen as elements of Fpη [x], have a common factor ϕ(x) which is irreducible of degree
κ := k/η. In the particular case gcd(η, κ) = 1 we can take f, g ∈ Z[x] which share an irreducible factor of degree
κ, whereas in the case gcd(η, κ) 6= 1 we have to guarantee that f and g are not defined over a proper subfield of
the number field of h.

2. Sieve. Given two parametersA andB, one collects all (up to sign) the degree 1 polynomials in Fpk [x] or equivalently
tuples in the set {(a0, . . . , aη−1, b0, . . . , bη−1 ∈ [−A,A]2η | a0 ≥ 0}, called sieving domain, so that Nf and Ng
are B-smooth (all prime factors are less than B), where

Nf = Rest

(
Resx

(
η−1∑
i=0

ait
i − x

η−1∑
i=0

bit
i, f(t, x)

)
, h(t)

)

is the norm on the f side, and similarly for g instead of f . In order to emphasize the analogy with the simpler
variants of NFS, we put E = Aη which is a good approximation of the square root of the cardinality of the sieving
domain.

3. Filtering. Unknowns which occur in a single relation are called singletons and are deleted together with the
corresponding equation. Additionally, using elementary transformations of the matrix one can create new singletons.
This leads to a smaller matrix and hence a faster resolution of the linear system.

4. Linear algebra step. One computes the right kernel of the sparse matrix obtained after the filtering using the Wiede-
mann algorithm [Wie86] or the Lanczos algorithm [Lan52,LO90] or their block variants [Cop94] and [Cop93,Mon95].
The coordinates of the kernel vector are called virtual logarithms.

5. Individual logarithms. Given a generator g of Fpn and an element h, compute the discrete logarithm logg h using
the virtual logarithms.
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3.2 Practical improvements

Although the complexity of NFS for DLP in Fp hasn’t changed for almost 30 years, its real-life speed has been
improving continuously. In the jargon of the NFS community an improvement which changes only the o(1) term in the
complexity is called a practical improvement.

3.2.1 Filtering. If an ideal occurs in a single relation then we can erase this ideal and its relation from the matrix.
Thanks to the exceeding number of relations compared to the cardinality of the factor base, one can erase rows and do
linear operations on the rows in order to create new singletons [CH02, Ch 3]. Table 3 summarizes how does the filtering
behave in practice. It is hard to compare the different rows of the table because the authors of different records made
different choices, some of which collected much more relations than needed (oversieved) and hence helped the filtering
step reduce considerably the matrix.

record rows before filtering rows after filtering reduction factor log2B

SNFS-1039 (factor) 13.8G 82.8M 167 38
NFS-768 (factor) 47.7G 192.8M 247 40

FFS-809 67.4M 3.6M 19 28
SNFS-1024 (DLP) 249M 28M 9 31

NFS-768 (DLP) 9.0G 23.5M 382 36

Table 3. Behavior of filtering in practice

We made an asymptotic estimation of the number of ideals which might be used to reduce the matrix and we
obtained the following statement.

Conjecture 1. In the filtering step of NFS one reduces the matrix by a factor (logB)1+o(1), where B is the smoothness
bound.

Justification: Let q be an ideal in the factor base of NFS lying above a prime q and let N denote the size of the norms
product and B the smoothness bound. We shall argue that the following statements are true:

1. If q < B/(logB)1+ε with ε > 0 then q occurs in a number of relations which tends to infinity as B and N go to
infinity.

2. If q > B/(logB)1−ε with ε > 0 then q will occur in a number of relations which tends to 0 as B and N go to
infinity.

The sieving domain has B2 elements (parameter tuning in NFS implies E = B where E is the square root of the
number of sieved pairs [BLJP93]) and a proportion of 1/q are divisible by q. They produce relations if the cofactor
of size N/q is B-smooth, for which we have no proven formula, but which is approximated by the proportion of
integers in the interval [1, N/q] which are B-smooth. Due to the theorem of Canfield, Erdös and Pomerance [CEP83]
this proportion is ρ

(
log(N/q)
logB

)
where ρ is Dickman’s function, i.e. the function such that ρ(v) = 1 for v ≤ 1 and

ρ′(v) = −ρ(v − 1)/v for v > 1.

number of relations where q occurs ≈ B2/q · ρ
(
log(N/q)

logB

)
.

Recall that in NFS we set B so that ρ
(

logN
logB

)−1
= B (once again see [BLJP93]). We put v = logN

logB , so that we have

logB = v log v, logN = v2 log v and q > B/v1+2ε (resp. q < B/v1−2ε). We replace all variables on the right hand
side by their expressions in terms of v and obtain that its logarithm is equivalent to v1+ε − v. It tends to∞ if ε > 0 so
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the ideals of norm q < B/(logB) occur in a very large number of relations and are unlikely to create singletons, so
they are not erased during filtering. The right hand side tends to −∞ if ε < 0 so the ideals of norm q > B/ log(B)
occur in almost no relations, and are very likely to be used during filtering.

Hence the filtering erases most of the ideals of norm larger than B/(logB)1+o(1) and keeps all but a negligible
fraction of the others, so that the matrix size is reduced by a factor (logB)1+o(1). �

It seems then plausible that the filtering gain is a constant times log(B), and by comparing it with Table 3 we model
the gain by log2B.

3.2.2 Exploiting automorphisms. Record computations with FFS [HSW+10,HSST12] and NFS [BGGM15a]
showed that if the target field is of the form pκη for two integers η and κ so that κ is small, then one can gain a
factor κ in the sieve and a factor κ2 in the linear algebra.

Kim and Barbulescu [KB16] explained that one has a similar gain in SexTNFS, where κ is to be replaced by
A, the number of automorphisms of h which fix g times the number of automorphisms of g. If κ = 1 and h has η
automorphisms then the exact number of automorphisms is A = η, e.g. A = ` − 1 if h = Φ`, the `-th cyclotomic
polynomial, for some prime `. If κ = 2 one doubles the number of automorphisms thanks to the automorphisms of
g. For example if h = Φ7 and g = x2 + αx + β + t4 + t2 + t − u for some integers α, β then A = 6 because any
automorphism in the set {τ iσj , 0 ≤ i ≤ 1, 0 ≤ j ≤ 2} can be used (here σ : t 7→ t2 and τ : x 7→ −α− x). Finally, if
κ = 3 and η = 4 an attacker might use h = φ8 and find polynomials g which have three automorphisms, so for a worst
case analysis we count A = 12.

3.3 Selection of polynomials

The polynomial selection consists of selecting h, f and g.

3.3.1 Choice of h. The polynomial h ∈ Z[x] has two constraints, its degree is η and it is irreducible modulo p.
Among the possible choices we select those having small norms for Nf and Ng, which generally corresponds to the
case when h has small coefficients. In all examples we could select h with coefficients in {0,−1, 1} and experiments
confirmed that the best choice is never much better than h = tη − t− 1.

In Section 3.2.2 we saw that in order to use the Galois automorphisms the attacker has to find a polynomial h with
non-trivial automorphisms. We ran an exhaustive search on the polynomials in Z[x] of degree less than 19 having
coefficients less than 6 in absolute value. In this set, the only polynomials that have automorphisms of order different
from 2 are those listed in Table 4.

degree 6 12 16 18

polynomials Φ7, Φ9, Φ14, Φ18 Φ13, Φ26 Φ17, Φ34 Φ19, Φ38

Table 4. List of all monic polynomials h ∈ Z[x] of degree between 6 and 20 such that ‖h‖ ≤ 10 and Aut(h) has elements of order
larger than 2.

3.3.2 Construction of f and g. One produces a large number of pairs of polynomials using one of the following meth-
ods: base-m [BLJP93], base-m-SNFS [LLJMP90], Joux-Pierrot [JP13], Conjugation [BGGM15a], JLSV1 [JLSV06,
Section 2.3], GJL [BGGM15a,Mat06], algorithms A,B,C or D of Sarkar and Singh [SS16c,SS16d,SS16b].

In this article we focus on families of pairings where p is parametrized, then one choice of polynomials is by far the
most natural. Let P (x) ∈ Z[x] and the integers u, v be such that p = P (u)/v. Then one can take f = P (xκ + S(t, x))
and g = xκ+S(t, x)−u for some S ∈ Z[t, x] of degree in x less than κ so that g is irreducible in (Fp[t]/h)[x]. In most
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cases this is the only choice but for instance in the case of KSS 18 one can also take f = P (x− 2) and g = x− 2− u,
with a non negligible effect on the complexity estimation.

How can we be sure that the attacker cannot find choices of f that we could not predict ? See [FGHT17] for a
discussion about the consequences of this question on discrete logarithms in Fp. The attacker cannot use the fastest
versions of NFS (SNFS, STNFS, SexTNFS, Joux-Pierrot) unless he finds three polynomials, T (x, y) ∈ Z[x, y] and
U, V ∈ Z(x) whose coefficients are bounded by an absolute constant, so that p = T (U(u), V (u)) for some integer u,
in which case he sets

f = T (x) and g = V (u)x− U(u).

In the case of SexTNFS, the coefficients of f occur at large powers in the norms and hence we can restrict the search to
very small constants. We ran the exhaustive search and obtained that the only alternative choices are f = P (x− 1) for
KSS 16, f = P (x− 2) for KSS 18 and f = 4x4 − 4x3 + 12x2 − 10x+ 7 and g = x− (3u+ 1) for BN. In the rest of
the security evaluation we considered the alternative choices together with the natural ones.

3.3.3 Optimization. Murphy [Mur98] introduced a map α : Q[x] → R which allows to decide which are the
best polynomials for NFS. Barbulescu and Lachand [BL17] proved, when f is quadratic of fundamental negative
discriminant, that for a random pair of relatively prime integers the norm N = Resx(a− bx, f) has the same probability
to be B-smooth (for a parameter B) as a random integer less than eα(f)N . Because of the uncertainty on α we cannot
predict the exact cost of a DLP computation with NFS. In the previous paragraph we saw that in the case of parametrized
pairings we only have one or two choices of f and g. For each choice we verify directly that α(f) ≈ 0 whereas for linear
polynomials the value of α is constant equal to 0.56..., which is also the average value of α on all polynomials [BL17].

4 Optimization of parameters

Given a field Fpn where the characteristic is parametrized by a polynomial P (u)/v of degree d, we decided to use
SexTNFS with f = P (xκ + S(t, x)) and g = xκ + S(t, x)− u for some polynomial S of degree in x less than n. We
also decided to use, if possible, h from Table 4 and otherwise h = tn/κ − t− 1 because it is the simplest one and then
the one providing the smallest norms. This choice is the best possible for the attacker. At this point we need to decide
which value of κ to use and to optimize parameters A and B.

4.1 Choice of κ.

According to [KB16, Section 4.1] the parameter κ is chosen to minimize the norms product NfNg ≈ E(d+1)κQ
1
dκ ,

where E is the square root of the cardinality of the sieve space and Q is pn. This corresponds to

κ ≈

√
log2Q

d(d+ 1) log2E
.

It was useful for us to guess the optimal value of κ, which is the most likely to be optimal, but we do nevertheless an
exhaustive search. Our method was to approximate log2Q from Figure 1 and to take E2 = 2s where s is the security
level, which leads to Table 5. We verified that in every case the best value is in this table.

security level d = 4 d = 6 d = 8 d = 10

128 2 or 3 1 or 2 1 or 2 1

192 2 or 3 1 or 2 1 or 2 1 or 2

Table 5. Rule of thumb values for κ. Here d is the degree of the polynomial P (x) such that p = P (u) for some integer u.
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4.2 Optimization of the boundsA andB.

As before B denotes the smoothness bound and A the bound on the coefficients of the sieved polynomials. A pair of
values is valid if the sieve produces enough relations, so we need to estimate the number of relations. The sieving space
is formed of the pairs a(t), b(t) in Z(t)/h so that deg a,deg b ≤ η − 1. If µ(t) is a root of unity of the number field of
h then the pairs (µa, µb) and (a, b) give the same multiplicative relation. In Section 3.1 we restricted a0 to positive
values to account for the unit −1, here the sieving space shrinks further by the number of roots of unity divided by two.

sieving space=(2A+ 1)2η/(2w),

where w is the index of {1,−1} in the group of roots of unity. By a Monte Carlo integration (Appendix A) we estimate
the bit size of the norms: we considered random tuples (a0, . . . , aη−1, b0, . . . , bη−1) each of the components being
uniformly chosen in the interval [−A,A]. We call bit size of the norms the arithmetic mean of the bits sizes of the
norms for each tuple in a sample of 25600 tuples (see Appendix A for more details). We emphasize that we average the
logarithms log2(Nf ) and log2(Ng), rather than Nf and Ng , because the logarithms are used to compute the smoothness

probabilities pf = ρ
(

log2Nf
log2 B

)
and pg = ρ

(
log2Ng
log2 B

)
. This gives us the total number of relations which is

relations = (sieving space) · pf · pg .

The factor base is formed of the prime ideals of norm less than B in the number fields of f and g, so the cardinality
of the factor base is asymptotically equal to 2B/ log(B). In some record computations the number of relations is less
than the cardinality of the factor base, e.g. 68% in [AFK+07], but for simplicity and without changing the complexity
results by more than one bit, we consider that the attacker must collect at least as many relations as elements in the
factor base. Hence the validity condition is

(2A+ 1)2η

2w
· pf · pg ≥

2B

log(B)
. (1)

Due to Galois automorphisms (see the discussion in Section 3.2.2) 2B
A log(B) non-conjugate relations can be used

to obtain 2B/log(B) relations (where A is the number of automorphisms of h times the number of automorphisms
of Fpn/Fpη which fix f and g). Equivalently, we collect only 2B

A log(B) relations and we keep one ideal in each
class of conjugacy so that the cardinality of the reduced factor base becomes 2B

A log(B) . Each relation is obtained on
average after testing p−1f p−1g elements of the sieving space, so the total number of enumerated (or sieved) elements is
2B/(A log(B)pfpg).

The ratio between the real cost of the sieve and the number of tuples enumerated (or sieved) in the sieve is hard to
evaluate so we call it csieve. According to Table 6, csieve is almost constant in various computations realized with various
variants of NFS. We stay on the safe side and model csieve to be a constant equal to 1.

One might ask if in the case of the new variants, TNFS, exTNFS and SexTNFS, one can approximate csieve by its
value in the classical variants. Examples abound where new attacks with better asymptotic complexity were actually
slower in practice beacuse of hidden constants [MSS16]. In a recent record computation [GGMT17, Section 2.1],
Grémy, Guillevic and Morain sieved a dimension three lattice with A = 216 in 359 CPU hours, which accounts for
csieve ≈ 27. This value can decrease with the size of A and thaks to practical improvements. However, it is safe to
assume that csieve will remain ≥ 1.

In the rest of the analysis we consider csieve = 1 which means that the sieving time equals the number of elements
of the sieving domain. Finally we obtain

sieve cost =
2B

A log(B) · pf · pg
.

The size of the matrix sent to filtering is 2B/A log(B). As explained in Section 3.2 it is reduced by a factor
log2B. The number of non-zero entries per row in the reduced matrix varies between 100 and 200 in all records
that we consider and we will approximate it by 128. Let then clin.alg be such that the cost of the linear algebra is
clin.alg2

7B2/(A log(B) log2(B))2, as it is expected to be using Wiedemann’s algorithm. The factor clin.alg accounts for
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record log2E log2(cost of sieve) log2B log2(cost of lin.alg.) log2(csieve) log2(clin.alg.)

SNFS-1039 (factor) 31.0 63.0 38 63.0 1 1

NFS-768 (factor) 33.0 66.5 40 64.5 0.5 −2
FFS-809 27.0 57.5 28 55.0 3.5 2

SNFS-1024 (DLP) 31.5 64.5 31 63.5 1.5 2

NFS-768 (DLP) 35.0 68.0 36 66.0 −2 −4

Table 6. A list of records and their parameters.

the cost of a multiplication in Fr, where r is the order of the pairings group. Since log2 r varies by at most a factor 2
between various types of pairings and various security levels between 128 and 256, we expect clin.alg to be a constant.
The records we summarized in Table 6 confirm that clin.alg is a constant close to 1.

We conclude this section with a model of the cost:

cost =
2B

A logB
ρ

(
log2(Nf )

log2B

)−1
ρ

(
log2(Ng)

log2B

)−1
+ 27

B2

A2(logB)2(log2B)2
, (2)

where A can be upper bounded by ηκ/ gcd(η, κ).
For each pairing curve and choice of polynomials one has to solve an optimization problem: find the values of

log2A and log2B which minimize the cost in Equation 2 under the condition in Equation 1.

4.3 Comparison to the analysis of Menezes, Sarkar and Singh

At this point of the article we can explain the difference between our analysis and that of [MSS16].

4.3.1 Impreciseness in the estimation of log2Nf and log2Ng . In order to estimate the bit size of the norms
Nf and Ng, Menezes, Sarkar and Singh used the mathematical upper bounds. In an experiment we computed the
distribution of the bit sizes of norms, and we present our results in Figure 4.3.1. A script to reproduce the experiment on
the same sample of 1000 pairs (a,b) is available online at [BD17]. The target is the 3072-bit finite field corresponding
to a BN curve in Section 5.2. The bitsize log2Nf (in the left) varies between 175 and 244, which is much smaller than
740, the mathematical upper bound. Similarly, log2Ng varies between 417 and 472 which is much smaller than 853, the
mathematical upper bound. In a similar experiment [MSS16, Table 3], Menezes, Sarkar and Singh observed a similar
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Fig. 2. Experimental distribution of log2Nf (in the left) and log2Ng (in the right) on the sieving domain of SexTNFS. The vertical
line shows the mathematical upper bound used in [MSS16].

situation : ”It is possible that a non-negligible fraction of these have norms close to the upper bounds. Our experiments
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only indicate that this fraction is less than 1/1000”. This corroborates with our results but the figure shows at which
point the upper bound used in [MSS16] is far away from 99.9% of the values. We remark however that their method is
adapted for a practitioner to convince himself that a NFS computation is feasible, because it gives an upper bound on
the complexity, but it cannot be used to obtain security estimations which ideally would require a lower bound.

This difference is well known to practitioners of factoring and discrete logarithm. Hence, the CADO-NFS software
package [BGI+14] sacrifices a few percents of relations by skipping the pairs (a,b) having large norms. For example,
from file params.c90 in the parameters directory of CADO-NFS we learn that ”lambda0/lambda1 is the early abort
sieving parameter, and if [...] the approximation of the log of the remaining cofactor is larger than lambda times lpb, we
reject”, where lambda0, lambda1 and lpb are parameters which control the percentage of relations we sacrifice. In this
light, the size of the largest 0.1% of the norms has no impact on the behavior of NFS implementations.

4.3.2 Other differences. Moreover, the analysis of Menezes, Sarkar and Singh in Section 6.3 does not mention a
series of aspects which can decrease the running time of SexTNFS.

1. Filtering. On page 13 of [MSS16] one reads ”the linear algebra phase will have a cost approximatively B2”. This
ignores that the number of rows and columns of the matrix is reduced during the filtering step. There is no evidence
that the reduction factor is a constant and in Section 3.2.1 we give heuristic arguments that it is approximatively
log2B. Moreover the size of the factor base is 2B/ log(B) rather than B. The discussion on the arithmetic modulo
r (` in their notations) on the same page is not necessary because elements of Fr are implemented on two or three
machine words already in the records that we list in Table 6, and elements in Fr are stored on at most 4 machine
words even for 256 bits of security.

2. (2A + 1) instead of A. We didn’t find in [MSS16] a discussion on the relation between E and A other than
the asymptotic relation E ∼ Aη. An attacker can use (and is likely to do so) as sieving domain the set of
tuples (a,b) ∈ Z2η which have the smallest value of max(‖a‖∞, ‖b‖∞) ≤ A, with A as small as possible so
that the cardinality of the sieving domain allows to obtain enough relations. In this case we have the relation
(2A+ 1)2η = E2. To our understanding, Menezes, Sarkar and Singh used the formula A = E1/η, which is less
precise, especially when the quotient η/ log2E is not very small.

3. Automorphisms and roots of unity. Menezes, Sarkar and Sing do not use the Galois automorphisms that we
discussed in Section 3.2.2.

5 Estimating SexTNFS complexity on the most popular pairings

In this section, we use the results of the previous section to estimate the security level provided by a given finite field
Fpk when p is parametrized by a polynomial P (x).

5.1 Summarizing the process for computing SexTNFS cost

Let us first summarize the way to estimate the complexity of the SexTNFS algorithm. It is made of 4 steps.

– Step 1: Parameter selection. The first choice to be made is the one of the κ. All divisors of k must be tested so
that the following steps are done once for each κ. However, the first values to try are the ones in Table 5. Then one
has to choose the polynomial h such that A is as large as possible and h is as simple as possible (small and few
coefficients) and the polynomials f and g to define the commutative diagram given in the introduction. The details
on the ways to choose these polynomials are given in Section 3.3. In this step, we also determine the number of
roots of unity divided by two w and the number of automorphisms A.

– Step 2: Choice of the bounds A and B. These bounds will define the number of enumerated relations and the size
of the factor basis so they have a direct impact on the complexity. As already explained they must be chosen to
minimize the cost in Equation 2 under the condition in Equation 1. This optimization problem will be solve by brute
force because we do not need a very high accuracy. We first enumerate only integer values of log2A ∈ [1, 100η ]

and log2B ∈ [1, 100] because the cost is lower bounded by (A2η +B2)/1000 which is more than 2192 for larger
values of A and B. We call log2A0 and log2B0 the optimum of this integer search. In a second time we test
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all values of log2A in the set {log2A0 + i/100 | i integer in [−100, 100]} and all values of log2B in the set
{log2B0+j/5 | j integer in [−25, 25]}. When the optimal values ofA is less than 10, we switch from enumerating
values of log2A to enumerating integer values of A.

– Step 3: Verification. At this point we know what is the security level. For completeness we continue by verifying
once again by hand that the values of A and B, which were found by a non-proven program, are indeed valid
parameters for SexTNFS by checking that the number of relations is larger than the cardinality of the factor base.

– Step 4: Conclusion. We inject A and B in Equation 2 an verify once again that the cost of SexTNFS is that found
by our unproven solver of the optimization problem.

5.2 Example: a BN curve where the finite field has 3072 bits

One of the most popular BN curve is the one associated to u = −262 − 255 − 1 which was evaluated to 128 bits of
security before the recent developments on NFS. Let us follow Section 5.1 to estimate its real security level.

– Step 1: Parameter selection. We decide to use the SexTNFS algorithm with κ = 2 and η = 6 because it gives
the best result from the viewpoint of the attacker. The intermediate field will be defined by h = t6 − t3 − t− 1
which is irreducible modulo p. Indeed the cyclotomic polynomials Φ7, Φ9, Φ14 and Φ18 are not irreducible in
this case and h is the ”smallest” irreducible polynomial (it has only 4 non-zero coefficients which moreover
equal ±1). We tried several polynomials and found that x2 + t − u is irreducible in Fp6 = Fp[t]/h(t) so that
Fp12 = Fp6 [x]/(x2 + t− u). Hence we can take f = P (x2 + t) (where P is the polynomial parametrizing p given
in Section 2.1) and g = x2 + t− u. In this case, we have no non-trivial roots of unity (w = 1) and A = 2 because
g has degree two (as explained in Section 3.2.2).

– Step 2: Choice of the bounds A and B. As explained in Section 5.1, we applied Steps 3 and 4 for many values of
A and B to find that log2A = 7.36 and log2(B) = 57 are minimizing the cost given by the Equation 2.

– Step 3: Verification. The total number of tuples in the sieving space is (2A + 1)2η/(2w), where w = 1 is the
number of roots of unity of the number field of h, divided by 2, so the size of the sieving space is 299.45. By Monte
Carlo integration (Appendix A) we estimate the norms on the two sides of the commutative diagram and then one
can approximate the smoothness probability using Dickman’s function

log2(Nf ) ≈ 414.7⇒ ρ

(
log2(Nf )

log2(B)

)
≈ 2−21.41 and log2(Ng) ≈ 460.8⇒ ρ

(
log2(Ng)

log2(B)

)
≈ 2−25.30

Hence the number of relations is approximatively 299.45−21.41−25.30 ≈ 252.74.
On the other hand, the cardinality of the factor base is approximatively 2B/ log(B) ≈ 252.70, which is less than
the number of relations, so we have enough relations (Equation 1 is satisfied).

– Step 4: Conclusion. Equation 2 gives a security level of 99.69 bits. The details are as follows : the number of
relations we need to collect is 251.70 and each relation is obtained after testing on average 221.41+25.30 = 246.71 pairs
(a, b); hence the cost of the sieve is csieve2

51.70+46.71 ≈ 298.41 assuming csieve ≈ 1; on the other hand, the filtering
stage allows to reduce the matrix size by a factor around log2B = 57, its new size being N = 251.70/57 ≈ 246.87;
the cost of the algorithms of sparse linear algebra is given by 25N2 = 298.73 times the cost of an addition modulo
p, which counts here for an elementary operation.
Finally, we get the overall cost by adding the cost of the relation collection and the one of the linear algebra
:298.65 + 298.73 = 299.69 which means that the BN curve used in most of the existing implementations ensures no
more than the 100-bits security level.

5.3 General results and recommendations

The goal of this section is to determine the required size of the finite field involved in the pairings given in Section 2 to
ensure the 128, 192 and 256-bits security levels. For this, we follow the strategy given in Section 5.1 for each family
of curves making at each step the most favorable choice (for the attacker). For example we assumed that the number
of automorphisms A is maximal. If the parameter u (and therefore p) is selected such that the attacker cannot use the
best polynomials listed in Table 7 then we observed an increase of up to 3 bits of security (Sections 7.1.1 and 7.1.2).
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However, for the purpose of general recommendations, we consider that the attacker can use the best polynomials.
The results are given in Tables 8, 9 and 10, which then contain our recommendations for the size of pk where k is the
embedding degree. Note that in the case of KSS16 and KSS18 curves for 128 bits of security the parameter A is very
small (A = 9), and one might want to compute the proportion of elements in the sieving space having each possible
value of norms bit size. In every other case in this article we checked that such a precise analysis arrives to the same
results as our analysis.

Family η h g w A
BN, BLS12 6 Φ7 x2 − u+ t 7 6

KSS16 16 Φ17 x− u 17 16

KSS18 18 Φ19 x− u 19 18

Table 7. Best choices of h and g at 128 bits of security

Family log2(p
k) κ A log2B

BN 5534 2 1145 74.00
BLS12 5530 2 1098 73.65
KSS16 ≈ 4400 1 9 76.5
KSS18 ≈ 4300 1 9 76

Table 8. Size of finite fields associated to pairing-friendly curves which have a DLP cost of 2128 operations. Note that in the KSS
case the curve side is weaker than the field side and additionally the field side security is particularly difficult to evaluate.

Family log2 u log2(p
k) κ A log2B

KSS18 85 12200 1 44 110.2
BLS24 56 13300 1 9 109.4

Table 9. Recommended parameters for pairings of 192 bits of security

Family log2 u log2(p
k) κ A log2B

KSS18 185 26900 2 12855 137.8
BLS24 86 24700 1 23 141.0

Table 10. Recommended parameters for pairings of 256 bits of security

6 New parameters for the 128, 192 and 256-bit security level

The goal of this section is to propose new parameters for the 128-bits security level for the main families of curves given
in Section 2 (BN, BLS12, KSS16 and KSS18). This is done in 2 steps. The first one consists in finding the size of the
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extension field ensuring this security level in the general case which means that we assume that all the improvements
of the NFS-like algorithms can be used. This was done in Section 5.3 and the results are given in Table 8. We must
also take care that the r-torsion subgroup of the elliptic curve involved in the pairing computation ensures the 128-bits
security level. For example, this is the limiting factor in the KSS cases. Then, for each family, we know the size of the
curve parameter u that should be used to ensure the 128-bits security level (Table 11) in the general case. These sizes
guarantee the security level as soon as the parameter u has the required bit size.

Curve BN BLS12 KSS16 KSS18
log2(u) 114 77 34 44

Table 11. Bit size of the parameter u ensuring the 128-bits security level

The second step is to generate the best possible parameter u having the good bit size. Let us start with the generation
of a BN curve.

6.1 New BN parameter for level 128

The way to build the parameter u is detailed in [DMHR15]: it should be chosen sparse and congruent to 7 or 11 mod
12 so that building Fp12 can be done via Y 6 − (1 + i) over Fp2 = Fp[i]. We also impose the condition that the curve
obtained is twist-secure [VLFR08] which means that p+ 1+ t should have a 256-bits prime factor (where t is the trace
of the Frobenius as usual). We then performed an exhaustive search on u having increasing Hamming weight. There
are no results of weight 2. We found some values having Hamming weight 3 but not satisfying the congruence. More
precisely, the extension tower should be built using

√
−5 which is much less interesting in terms of Fp12 arithmetic.

Finally, we found the value u = 2114 + 2101 − 214 − 1 which satisfies all the required conditions. The curve E defined
over Fp by

E : y2 = x3 − 4

is twist-secure (p+ 1 + t has a 280-bits prime factor) and u = 7 mod 12 so that Fp2 is defined by X2 + 1 and Fp12 by
Y 6 − (1 + i). The twisted curve E′ is defined over Fp2 by

E′ : y2 = x3 − 4(1 + i).

6.2 New BLS12 parameter for level 128

Most of the results of [DMHR15] can be used for BLS curves because the extension degree is also 12. Again, we
performed an exhaustive search on the parameter u having increasing Hamming weight. We did not find any value of
weight 2 but we found two having Hamming weight 3, −277 + 250 + 233 and −277 − 259 + 29. In both cases Fp12 can
be built via Y 6 − (1 + i) over Fp2 = Fp[i], which provides the best possible Fp12 arithmetic. We recommend to use the
first one because if the second one is used, the cyclotomic polynomial Φ7 is irreducible and can be used for h, which
improves the SexNFS attack. Then, for u = −277 + 250 + 233, the elliptic curve E (resp. its twist E′) is defined over
Fp (resp. Fp2 ) by

E : y2 = x3 + 4, E′ : y2 = x3 + 4(1 + i)

E is of course twist-secure (thanks to a 273 prime factor).

6.3 New KSS16 parameter for level 128

In this case, the parameter u should have at least 34 bits to ensure the 128-bits security level on the elliptic curve side.
Unfortunately, an exhaustive search does not provide any suitable value of the parameter having Hamming weight less
than or equal to 5. The sparser parameter we found is −234 + 227 − 223 + 220 − 211 + 1. In this case, the extension
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field is defined by X16 − 2 which provides the best possible Fp16 arithmetic. The elliptic curve E (resp. its twist E′) is
defined over Fp (resp. Fp4 ) by

E : y2 = x3 + x, E′ : y2 = x3 + 2
1
4x

And again, E is twist-secure (thanks to a 318-bits prime factor). However we found a suitable 35-bits parameter having
Hamming weight 5. Such a parameter will of course involve an additional doubling/squaring step in the exponentiation
algorithms but it will also involve one addition/multiplication step less. The impact on the Miller loop is negligible, but
in the final exponentiation this means that a Fp16 multiplication is replaced by a cyclotomic squaring and this happens 9
times since 9 exponentiations by u are performed (see Section 8 for details). Since a cyclotomic squaring is more than
twice faster than a Fp16 multiplication, it is better to use the 35-bits parameter as long as Fp arithmetic is not impacted.
For example, p has 330 bits for the 34-bits value of u and 340 for the 35-bits value. Hence, if a 32-bits device is used,
both values of p require 11 words so the Fp arithmetic is not impacted. On the contrary, if a 16-bits device is used,
choosing the 35-bits value of u implies that p requires 22 words instead of 21. Then the 34-bits value may be preferred
in this case. This parameter is u = 235 − 232 − 218 + 28 + 1, Fp16 is also defined by X16 − 2 and the elliptic curve E
(resp. its twist E′) is defined over Fp (resp. Fp4 ) by

E : y2 = x3 + x, E′ : y2 = x3 + 2−
1
4x

E is of course twist-secure (thanks to a 281-bits prime factor).

6.4 New KSS18 parameter for level 128

Again, the limiting factor for the security level is the elliptic curve size so that u should have at least 44 bits. Our
exhaustive search provides no values having weight 2 or 3 and only one having weight 4. It is u = 244 + 222 − 29 + 2.
In this case, Fp18 cannot be defined by X18 − 2 but by X18 − 3. The elliptic curves are defined by

E : y2 = x3 + 3, E′ : y2 = x3 + 3.3
1
3 (or 3.3−

1
3 ).

The curve E is twist-secure (thanks to a 333-bits prime factor).

6.5 Discussion on subgroup-secure curves for level 128

All the curves provided are not protected against the so-called subgroup attacks. These attacks use the fact that the
three groups involved in the pairing may have small cofactors [LL97]. They can be prevented by choosing resistant
parameters. However they do not occur for all protocols. They can also be prevented by the use of some (potentially
expensive) subgroup membership tests. Then subgroup-secure parameters are not always used in the literature and in
real-life implementations. That is the reason why we provided non subgroup-secure parameters in the general case
(better efficiency) and subgroup-secure ones in this higher security section (that should be preferred in some situations).

The definition of subgroup security for pairing is given in [BCM+15] and implies that one should be able to find
factors of G1,G2 and G3. This can be done using the ECM method but it is very costly so one cannot perform an
exhaustive search checking subgroup security at each step. As explained in [BCM+15], the most reasonable way to find
a subgroup-secure curve for pairing applications is to find a parameter u such that #G2/r and #G3/r are primes. This
is of course much easier to check but on the other hand there are much fewer candidates.

According Section 8, we are only interested in BLS12 and KSS16 curves in the case of security level 128. We
then made an exhaustive search of increasing Hamming weight values of u satisfying this condition. For BLS12
curves, we find some parameters in weight 7. We give only one here but the other ones are not so difficult to find:
u = −277− 271− 264 +237 +235 +222− 25. In this cases Fp12 can be built via Y 6− (1+ i) over Fp2 = Fp[i] which
provides the best possible Fp12 arithmetic. The elliptic curve E (resp. its twist E′) is defined over Fp (resp. Fp2 ) by

E : y2 = x3 − 2, E′ : y2 = x3 − 2/(1 + i)
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E is of course twist-secure (thanks to a 433 prime factor).

The case of KSS16 curves is more complicated. We first remark that #G2/r and #G3/r are always even and
often divisible by 17 [GF16] so we have interest to relax the condition. Unfortunately it was not sufficient to find a
parameter of Hamming weight less than or equal to 10. This is due to the fact that log2(u) = 34 implies that there are
not enough possibilities for u to have a reasonable probability that all the numbers involved (p, r, #G2/2r, #G3/2r)
are primes together (up to some 17n factor). As a consequence, it is probably more interesting to choose the previous
subgroup-secure BLS curve or the non subgroup-secure KSS16 curve given in Section 7.1.3 together with the necessary
subgroup membership tests (depending on the protocol).

6.6 New parameters for level 192

In the case of higher levels of security we prefer to be more cautious. Instead of a comparison of the best curves we
simply give our own proposals. In terms of security we are once again cautious, our curves having more than 192 bits of
security. This is due to the nature of our approach (the targeted extension field size is first determined in the worst case).
We give only a KSS18 and a BLS24 curve since there is no doubt that BN, BLS12 and KSS16 will be less efficient.

6.6.1 New KSS18 parameter for level 192 We saw in Table 9 that the parameter u should be chosen such that
log2(u) ≥ 85. As in the 128-bits case, we perform an exhaustive search of low Hamming weight values for u. The best
value we found is u = −285 − 231 − 226 + 26. In this case, Fp18 can be defined by X18 − 2. The elliptic curves are
defined by

E : y2 = x3 + 2, E′ : y2 = x3 + 2.2
1
3 (or 2.2−

1
3 )

The curve E is twist-secure (thanks to a 652-bits prime factor).

6.6.2 New BLS24 parameter for level 192 We saw in Table 9 that the parameter u should be chosen such that
log2(u) ≥ 56. As in the 128-bits case, we perform an exhaustive search of low Hamming weight values for u. The best
value we found is u = −256 − 243 + 29 − 26. In this case, Fp24 can be built via Y 12 − (1 + i) over Fp2 = Fp[i] which
provides the best possible Fp24 arithmetic. The elliptic curves are defined by

E : y2 = x3 − 2, E′ : y2 = x3 − 2/(1 + i)

E is of course twist-secure (thanks to a 427 prime factor).

6.7 New parameters for lever 256

As in the case of level 192, the fast pairings correspond to KSS18 and BLS24, thanks to theirs embedding degrees
which are higher than that of BN, BLS12 and KSS16.

In order to keep the complexity low we use only values of u which can be written as a small number of terms of the
form 2a for some integers a. A side effect is that u ≈ 2a for some a and therefore p ≈ u18 and p ≈ u24 in the cases of
KSS18 and respectively BLS24. This makes it difficult to tune log2 p

k precisely.

6.7.1 New KSS18 parameter for level 256 The parameter

u = 2186 − 275 − 222 + 24

allows to have a finite field bit size of 26700. In this case, Fp18 can be defined by X18 − 2. The elliptic curves are
defined by

E : y2 = x3 − 2, E′ : y2 = x3 − 2.2
1
3 (or 2.2−

1
3 )

The curve E is twist-secure (thanks to a 1205-bits prime factor).
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6.7.2 New BLS24 parameter for level 256 We propose parameter

u = −2103 − 2101 + 268 + 250,

which allows to have a finite field of bit size 24760. In this case, Fp24 can be also built via Y 12−(1+i) over Fp2 = Fp[i].
The elliptic curves are defined by

E : y2 = x3 − 2, E′ : y2 = x3 − 2/(1 + i)

E is of course twist-secure (thanks to a 581 prime factor).

7 Effective security of the selected curves

Let us now apply the strategy given in Section 5.1 to evaluate the real security of the proposed curves.

7.1 Level 128

7.1.1 BN We study the BN curve proposed in the previous section, which has parameter u = 2114 + 2101 − 214 − 1.

– Step 1. The best results are obtained with κ = 2 and η = 6. The best choices for the polynomials are h =
t6 − t4 + t2 + 1, g = x2 − t− u and f = P (x2 − t). In this case, we have w = 1 and A = 2 as in Section 5.2. As
a consequence we will find a higher security level here than in the general case.

– Step 2. A = 1098 ≈ 210.10 and B = 274.2 are minimizing Equation 2 and satisfying Equation 1.
– Step 3. The size of the sieving space is (2A + 1)12/2 ≈ 2132.21. The Monte Carlo integration (Appendix A)

gives log2(Nf ) ≈ 557.0 and log2(Ng) ≈ 808.9. Then the smoothness probabilities are approximatively equal to

ρ
(

log2(Nf )
log2(B)

)
≈ 2−22.87 and ρ

(
log2(Ng)
log2(B)

)
≈ 2−40.52. Hence we expect a number of 2132.21−22.87−40.52 ≈ 268.82

relations which is larger than the cardinality of the factor base which is around 268.78.
– Step 4. Evaluating Equation 2 with these data finally gives an overall complexity of 2131.3.

Remark 1. The size of the parameters for this pairing are so that they guarantee 128 bits of security for arbitrary
parameters in the BN family. However this particular choice offers 131 bits of security.

7.1.2 BLS 12 The recommended parameter is u = −277 + 250 + 233.

– Step 1. We chose κ = 2 and η = 6. The best polynomials are h = t6 − t− 1, f = P (x2 + t+ t2 + t4 + 1) where
P (x) = (x− 1)2(x4 − x2 + 1) + 3x and g = x2 + t+ t2 + t4 + 1− u. In this case, we have w = 7 and A = 2
(because g is quadratic).

– Step 2. A = 1169 and log2B = 73.50
– Step 3.
• log2(sieve space) = 133.30
• log2(Nf ) = 791.2⇒ log2(smoothness probability on the f side) = −39.17
• log2(Ng) = 584.8⇒ log2(smoothness probability on the g side) = −24.67
• log2(relations) = 69.46
• log2(reduced factor base) = 67.83 (enough relations)

– Step 4. security=131.8

Remark 2. Zhaohui Cheng communicated to us two choices of BLS12 curses which have 127 bits of security:

– equation y2 = x3 + 9 and parameter u = −(273 + 272 + 250 + 224);
– equation y2 = x3 + 7 and parameter u = −(212 + 248 + 249 + 250 + 251 + 252 + 253 + 254 + 255 + 256 + 257 +
258 + 259 + 260 + 261 + 262 + 263 + 264 + 265 + 266 + 267 + 268 + 269 + 270 + 272 + 273).

The field pk is 5280 bits long instead of the 5530 bits required by the general estimations in Table 7. Hence, our
approach of first finding general recommendations for each family (assuming the attacker can apply all improvements),
then checking specific values of u, only loses 5% in length.

18



7.1.3 KSS 16 The recommended parameter is u = 235 − 232 − 218 + 28 + 1.

– Step 1. We chose κ = 1 and η = 16. The best polynomials are h = Φ17, f = P (x− 1) and g = x− u− 1. In this
case, we have w = 17 and A = 16.

– Step 2. A = 12 and log2B = 80
– Step 3.
• log2(sieve space) = 143.52
• log2(Nf ) = 920.4⇒ log2(smoothness probability on the f side) = −43.23
• log2(Ng) = 628.9⇒ log2(smoothness probability on the g side) = −24.21
• log2(relations) = 76.08
• log2(reduced factor base) = 71.20 (enough relations)

– Step 4. security=139.0. Note that this is the security only on the finite field side. The security on the elliptic curve
side is 128 as required.

7.1.4 KSS 18 The recommended parameter is u = 244 + 222 − 29 + 2.

– Step 1. We chose κ = 1 and η = 18. The best polynomials are h = t18 − t4 − t2 − t − 1, f = P (x − 2) and
g = x− u− 2. In this case, we have w = 1 and A = 1.

– Step 2. A = 11 and log2B = 82.5
– Step 3.
• log2(sieve space) = 161.85
• log2(Nf ) = 920.4⇒ log2(smoothness probability on the f side) = −36.21
• log2(Ng) = 628.9⇒ log2(smoothness probability on the g side) = −38.33
• log2(relations) = 87.31
• log2(reduced factor base) = 77.66 (enough relations)

– Step 4. security=152.4. Note that this is the security only on the finite field side. The security on the elliptic curve
side is 128 as required.

7.2 Level 192

7.2.1 KSS18 for level 192 To evaluate its real security, we use the way described in Section 5.1 and we get

– Step 1. We chose κ = 1 and η = 18. The best polynomials are h = t18 − t4 − t2 − t − 1, f = P (x − 2) and
g = x− u− 2. In this case, we have w = 1 and A = 1.

– Step 2. A = 34 and log2B = 108.9
– Step 3.
• log2(sieve space) = 161.85
• log2(Nf ) = 1114⇒ log2(smoothness probability on the f side) = −36.29
• log2(Ng) = 1642⇒ log2(smoothness probability on the g side) = −63.99
• log2(relations) = 118.62
• log2(reduced factor base) = 103.66 (enough relations)

– Step 4. security = 204.09.

7.2.2 BLS24 for level 192 To evaluate its real security, we use the way described in Section 5.1 and we get

– Step 1. We chose κ = 1 and η = 24. The best polynomials are h = t24+ t4− t3− t− 1, f = P (x) and g = x−u.
In this case, we have w = 1 and A = 1.

– Step 2. A = 9 and log2B = 109.8
– Step 3.
• log2(sieve space) = 202.90
• log2(Nf ) = 1295⇒ log2(smoothness probability on the f side) = −44.85
• log2(Ng) = 1460⇒ log2(smoothness probability on the g side) = −53.42
• log2(relations) = 104.63
• log2(reduced factor base) = 104.55 (enough relations)

– Step 4. security = 203.72.
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7.3 Level 256

7.3.1 KSS18

– Step 1. We chose κ = 2 and η = 9. The best polynomials are h = t9 + t8 + t7 − t6 − 1, f = P (x2 − 2) where
P = x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 240, g = x2 − 2− u.

– Step 2. A = 11747 and log2B = 137.7
– Step 3.
• log2(sieve space) = 260.36
• log2(Nf ) = 2185 and log2(Ng) = 1928
• log2(relations) = 134.35 ¿ log2(factor base) = 131.12 (enough relations)

– Step 4. security = 257.13

7.3.2 BLS24

– Step 1. We choose κ = 1 and η = 24. The best polynomials are h = t24 − t23 − t21 + t20 − 1, f = P =
(x− 1)2 ∗ (x8 − x4 + 1) + 3 ∗ x, g = x− u.

– Step 2. A = 23 and log2B = 138.5
– Step 3.
• log2(sieving domain) = 262.62
• log2(Nf ) = 1522 and log2(Ng) = 2619
• log2(relations) = 137.28 > 131.92 = log2(factor base) (enough relations)

– Step 4. security = 260.9

8 Complexity estimations and comparisons for the 128 bits security level

The goal of this section is to compare the pairing computation cost for the curves given in section 6 at the 128 bits
security level. For this, we evaluate the cost of an optimal pairing [Ver09] (because it is by far the most efficient at
this security level) computation in each case (BN, BLS12, KSS16 and KSS18). Let us first recall the steps of the
computation.

8.1 Optimal ate pairing computation

We do not give here the detailed algorithm to compute pairings but only what is necessary to analyze its complexity.
More details can be found for example in [EMJ17].

8.1.1 The Miller loop. Miller explains how to compute fu,Q in [Mil04]. The algorithm is based on the computation
of [u]Q using the double and add algorithm. At each step of this algorithm, f is updated with the line function involved
in the elliptic curve operation. This algorithm has been improved by many authors in particular using the twisted curve
to eliminate denominators and replace Fpk multiplications by sparse ones. The best known complexity for each step are
obtained using projective coordinates [GS10]. They are given below

– If d = 6, the doubling step requires one squaring in Fpk , denoted Sk, one sparse multiplication in Fpk , denoted
sMk (for updating f ) together with 2 multiplications in Fpe , denoted Me, 7 squarings in Fpe and 2e multiplications
in Fp, denoted M (for doubling on the curve and computing the line involved in this doubling). If d = 4, the curve
side requires one additional Se.

– If d = 6, the mixed addition step requires one sMk for updating f together with 11Me, 2Se and 2eM (or 9Me,
5Se and 2eM if d = 4).

– Additional lines in the pairing given in Table 2 are nothing but extra addition steps. In term of complexity, the last
one is usually less expensive (4Me and 2eM for the curve side) because the resulting point on the curve is useless.

– The computation of points of the form [p]Q is very easy because Q is in the p-eigenspace of the Frobenius map.
Then it requires no more than 2 Frobenius mapping in Fpk , denoted Fk. In practice, it requires even less but there is
no interest to get into these kind of details for this comparison work.
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8.1.2 The final exponentiation. It is usually split in 2 parts, an easy one with the exponent p
k−1
φk(p)

(where φk is the

k-th cyclotomic polynomial) and a hard one with the exponent φk(p)r . The easy part is made of an inversion, denoted
Ik, and few multiplications and Frobenius mappings in Fpk . The hard part is much more expensive but Scott et al.
[SBC+09] reduce this cost by writing the exponent in base p (because p-th powering is only a Frobenius mapping).
As p is polynomially parametrized by u, the result is obtained thanks to degu(p)− 1 exponentiations by u and some
additional Fpk operations. The number of these additional operations can be reduce by considering powers of the
pairing [FKR11]. Note also that, thanks to the easy part of the final exponentiation, the squaring operations (which are
widely used during the hard part) can be simplified. We can either use cyclotomic squarings [GS10], denoted cSk, or
compressed squarings [Kar13,AKL+11], denoted sk. Compressed squarings are usually more efficient. However, this
method has been developed in the case of degree 6 twists [Kar13,AKL+11]. There is no doubt that it can be adapted to
the case of degree 4 twists (and then to KSS16 curves) but we did not find explicit formulas in the literature. Then, for a
fairer comparison between the curves, we chose to consider both squaring methods in the following.

8.2 Finite field arithmetic

In order to compare the different candidates, we need a common base. It cannot be the field Fp because p has not the
same size in all cases. So we have to go to the data-words level. We will only give global estimates so we need to
make some assumptions that are close to an average environment. Then, we assume that we work on a 32 bits device
because it is a good average between software, FPGA and embedded devices. We will also assume that Fp arithmetic is
quadratic (even if the multiplication complexity can be subquadratic, the reduction usually stays quadratic). Finally,
for simplicity, we will assume that Fp multiplications and squarings have almost the same cost and we will neglect
additions. Of course, these assumptions are very dependent on the device so we do not pretend that our result is valid in
every case. Anyway, our goal here is not to get an universal comparison (which is not possible) but to have an idea of
which curve has to be chosen to get the best efficiency. For a given precise device or context, such general estimates
cannot replace a real implementation for a fair comparison.

Pairing computation makes a large use of Fpe arithmetic. Let us first recall them in Table 12 for the considered
values of e.

Fp2 Fp3 Fp4
Multiplication 3M 6M 9M

Squaring 2M 5M 6M

Table 12. Complexities of Fpe arithmetic

Concerning the Fpk arithmetic, the complexities are given in the literature in the pairing context for extensions of degree
12 [AFCK+13,DMHR15], 16 [ZL12] and 18 [AFCK+13]. They are summarized in Table 13.
We made the simplistic assumption that the cost of Frobenius mapping in Fpk is always (k − 1)M which is not always
the case (for example for p2 or p3 powering) but this has negligible impact on our comparison (there are few such
mapping and this remark holds for all the considered cases).

8.3 Fp complexities estimations

8.3.1 BN curve. In this case, the optimal ate pairing is given by

(
f6u+2,Q(P ).`[6u+2]Q,[p]Q(P ).`[6u+2+p]Q,[p2]Q(P )

) p12−1
r

It is explained in Section 6 that u = 2114 + 2101 − 214 − 1 should be chosen to ensure the 128-bits security level and
the best possible extension field arithmetic. Then 6u+ 2 has length 116 and Hamming weight 7. As a consequence, the
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Fp12 Fp16 Fp18
Multiplication 54M 81M 108M

Sparse multiplication 39M 63M 78M

Inversion I + 97M I + 134M I + 172M
Frobenius 11M 15M 17M

Squaring 36M 54M 66M
Cyclotomic squaring 18M 36M 36M
Compressed squaring 12M – 24M

Simult. decompression
I + (24n− 5)M – I + (51n− 6)M

of n elements

Table 13. Complexities of Fpk arithmetic

Miller loop requires 116 doubling steps and 6 addition steps. Extra lines computations require 4 Frobenius mapping (to
compute [p]Q and [p2]Q), one addition step and one incomplete addition step. Then the overall cost is

116(2M2+7S2+4M)+115(S12+sM12)+7(11M2+2S2+4M)+4M2+4M+8sM12+4F12

Using Tables 12 and 13, this step requires 12068 multiplications in Fp.
There are many ways to compute the final exponentiation for BN curves. The most efficient one is given in [FKR11]
and requires I12 + 12M12 + 3cS12 + 4F12 in addition to the 3 exponentiation by u (because p has degree 4 in u). As u
has length 114 and Hamming weight 4, each of these exponentiations requires 114 squarings and 3 multiplications. If
the cyclotomic squaring are used, we need 114cS12 + 3M12 = 2214M according Table 13. If the compressed squaring
technique is used, we additionally need the simultaneous decompression of 4 elements. Then, according to Table 13
each exponentiation by u requires 1621M + I .
The final exponentiation then requires 7485M + I or 5706M + 4I depending on the way to perform squarings.
Finally computing the optimal ate pairing for BN curve ensuring the 128-bits security level requires 19553M + I or
17774M + 4I depending on the way to perform squarings during the final exponentiation.

8.3.2 BLS12 curve. The optimal ate pairing is simpler in this case since it is given by

(fu,Q(P ))
p12−1
r

We have seen that the best choice of u is −277 + 250 + 233 so that the Miller loop is made of 77 doubling steps and 2
addition steps. Then, its cost is

77(2M2+7S2+4M)+76(S12+sM12)+2(11M2+2S2+4M)+2sM12 = 7708M

According [AFCK+13], the final exponentiation requires I12 + 12M12 + 2cS12 + 4F12 = 825M + I in addition
to the 5 exponentiation by u (because p has degree 6 in u). As u has length 77 and Hamming weight 3, each of
these exponentiations requires 77 squarings and 2 multiplications. If the cyclotomic squaring are used, we need
77cS12 + 2M12 = 1494M . If the compressed squaring technique is used, we additionally need the simultaneous
decompression of 3 elements so that each exponentiation by u requires 1099M + I .
The final exponentiation then requires 8295M + I or 6320M + 6I depending on the way to perform squarings. Finally
computing the optimal ate pairing for BLS12 curve ensuring the 128-bits security level requires 16003M + I or
14028M + 6I .

8.3.3 KSS16 curve. For KSS16 curves, the optimal ate pairing is given by

((
fu,Q(P ).`[u]Q,[p]Q(P )

)p3
.`Q,Q(P )

) p16−1
r
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and u has been chosen to be 235 − 232 − 218 + 28 + 1 in section 6. Then the Miller loop requires 35 doubling steps and
4 addition steps. According [ZL12], extra lines computations require 3 Frobenius mapping (2 to compute [p]Q and one
to raise to p3) and two incomplete addition steps. The overall cost is then

35(2M4+8S4+8M)+34(S16+sM16)+4(9M4+5S4+8M)+3F16 + 5M4+S4+16M+6sM16 = 7534M

According [GF16], the final exponentiation requires I16 + 32M16 + 34cS16 + 24M4 + 8F16 in addition to the 9
exponentiation by u (because p has degree 10 in u). As u has length 35 and Hamming weight 5, each of these
exponentiations requires 35 cyclotomic squarings and 4 multiplications. According Table 13, each exponentiation by u
then requires 1584M . Note that we do not find in the literature formulas for compressed squaring in the KSS16 case.
The final exponentiation then requires 18542M+I . Finally computing the optimal ate pairing for KSS16 curve ensuring
the 128-bits security level requires 26076M + I .

8.3.4 KSS18 curve. In this case, the optimal ate pairing is given by

(
fu,Q(P ).f3,Q(P )

p.`[u]Q,[3p]Q(P )
) p18−1

r

The best choice of u to ensure the 128-bits security level is 244 + 222 − 29 + 2 so that the Miller loop is made of 44
doubling steps and 3 addition steps. Extra lines computations requires one addition step and one Frobenius mapping (to
compute f3,Q(P )p) together with one Fp18 multiplication (to multiply the result by fu,Q(P )), 2 Frobenius mappings
and one incomplete addition step [AFCK+13]. Then its cost is

44(2M3+7S3+6M)+43(S18+sM18)+4(11M3+2S3+6M)+4sM18+M18+3F18+4M3+6M+sM18 = 9431M

According [FKR11,AFCK+13], the final exponentiation requires I18 + 54M18 + 8cS18 + 29F18 = 6785M + I in
addition to the 7 exponentiation by u (because p has degree 8 in u). As u has length 44 and Hamming weight 4, each
of these exponentiations requires 44 squarings and 3 multiplications. If the cyclotomic squaring are used, we need
44cS18 + 3M18 = 1908M . If the compressed squaring technique is used, we additionally need the simultaneous
decompression of 4 elements so that each exponentiation by u requires 1578M + I .
The final exponentiation then requires 20141M + I or 17831M + 8I depending on the way to perform squarings.
Finally computing the optimal ate pairing for KSS18 curve ensuring the 128-bits security level requires 29572M + I or
27262M + 8I .

8.4 Comparison

Let us first summarize the complexities obtained in the previous subsections.

Using cyclotomic Using compressed
Base field size

squarings squarings
BN 19553M + I 17774M + 4I 461 bits

BLS12 16003M + I 14028M + 6I 461 bits
KSS16 26076M + I – 340 bits
KSS18 29572M + I 27262M + 8I 348 bits

Table 14. Fp complexities of optimal ate pairing computation

We can obviously conclude that BLS12 curve is more efficient than BN one and that KSS16 is better than KSS18.
It is more complicated to compare BLS12 and KSS16 because the base fields are not the same. For this, let us first
compare the costs of M which is depending of p. As explained in Section 8.2, we assumed that we are working on
a 32-bits architecture but the theoretical results would be similar with another choice and, in any case, this will not
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replace real life implementations. For BN and BLS12 curves, p has 461 bits so that 15 32-bits words are necessary. For
the KSS curves, 11 32-bits words are necessary. As a consequence, we can assume that M = 152 = 225 for BN and
BLS12 curves while M = 112 = 121 for KSS ones. Reporting these values in Table 14, we get the comparative table
15. In any case, the KSS16 curve gives the best result which was not expected at the beginning of this work. Of course

Using cyclotomic Using compressed
squarings squarings

BN 4399425 + I 3999150 + 4I
BLS12 3600675 + I 3156300 + 6I
KSS16 3155196 + I –
KSS18 3578212 + I 3298702 + 8I

Table 15. Comparative complexities of optimal ate pairing computation

the complexity for the BLS12 curve using compressed squaring is very close to the complexity of the KSS16 curve
with cyclotomic squarings and a practical implementation should be done to confirm the estimated result obtained here.
But KSS16 curves have not been studied as much as the BN curves and, more generally, as curves having a degree 6
twist. Then we are quite confident that optimal pairing on the KSS16 curve given in section 7.1.3 can be improved for
example by computing the formulas for compressed squaring in this case.

Conclusion

It was already known that the BN curves, widely used in the literature for the 128-bits security level, do not ensure this
security level because of the SexTNFS algorithm. In a recent paper, Menezes, Sarkar and Singh [MSS16] proposed
new key sizes but their analysis is not precise enough. In this paper, we carefully estimated the complexity of this
algorithm in the context of most common pairing families. We also explained why it is much more realistic than the
one given in [MSS16] for any real life SexTNFS implementation. As a consequence, we give the updated security
level of this curve which is in fact 100 bits. We also use this complexity estimation to determine the sizes of the finite
field extensions that has to be used to ensure the 128, 192 and 256-bit security levels, and obtained values which are
more than 66% larger than the formerly used ones. According to these recommendations, we generate new pairing
parameters especially in the 128,192 and 256-bit security levels that are twist-secure (but also some that are twist and
subgroup-secure). Finally, for the curves ensuring 128 bits of security we estimated the complexity of the optimal ate
pairing for each proposed curve and concluded that BLS12 and, more surprisingly, KSS16 are the most efficient choices.
Therefore we encourage the community to study more precisely these curves and to propose software or hardware
implementation to confirm our conclusions. This study which is focused on the most popular families is probably not
complete since other families and/or embedding degrees could be more interesting.
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GKZ14b. R. Granger, T. Kleinjung, and J. Zumbrägel. On the powers of 2. Cryptology ePrint Archive, Report 2014/300, 2014.
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A Numerical integration

The size of the norms can by computed via numerical methods. Due to the known upper bounds we can certify that our
results are correct up to an error probability of 2−128, so that our chances to be wrong are equal to the chances of an
attacker to break the system by pure luck.

Given a polynomial f and a sieve parameter A let c(f,A) be the average of value of {log2Nf (e) | e tuple in sieving
domain} and U(f,A) an upper bound on the norms on the f side for pairs in the sieving domain. Let e1, . . ., eT be
random tuples in the sieving domain, uniformly and independently chosen. Then the Chernoff theorem applied to the
random variables log2Nf (e1)

log2 U(f) ,. . ., log2Nf (eT )
log2 U(f) states that for any constant ε > 0

Prob

(
|c(f,A)−+

1

T

T∑
i=1

log2Nf (ei)| < ε log2 U(f,A)

)
≤ 2e−2ε

2T . (3)

For ε = 0.05 we solve the equation e−2ε
2T = 2−128 and obtain T = 25600.
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B One cannot change the complexity inside the frame of NFS

Variants of NFS where p is parametrized (SNFS, STNFS, SexTNFS, Joux-Pierrot) are considered to be the dream
situation for an attacker. Fried et al. [FGHT17, Sec 4.1] made a series of arguments very similar to the arguments that
we use below.

Fact 1 Let pn be a prime power and let f, g ∈ Z[x] two polynomials which have a common factor ϕ modulo p which is
irreducible of degree n. A variant of NFS which uses these polynomials and find all relations in a time proportional
to or larger than the size of the sieving space (enumeration or sieving) has complexity at least L[32]1+o(1) where
L[c] = exp(c1/3 log pn1/3 log log(pn)2/3).

Argument:
step 1 We start by proving that pn divides the resultant of f and g : pn | Res(f, g). Indeed, the resultant is the

discriminant of the Sylvester matrix and further the volume of the lattice L = fZ[x] + gZ[x] inside of Z[x]. Since
L′ = pZ[x] + ϕZ[x] is a lattice which contains L we conclude that the volume of the latter divides the volume of the
former : pn divides Res(f, g).

step 2 Let df and dg be the degrees of f and g and let E be the sieve parameter (E = Aη in STNFS and SexTNFS).
We have Res(f, g) ≤ df log2‖g‖+ dg log2‖f‖ which creates the constraint

df log2‖g‖+ dg log2‖f‖ ≥ n log2 p.

We easily compute the size of the norms as log2‖f‖ + log2‖g‖ + (df + dg) log2E. At this point we note that we
have to solve an optimization problem for which we set K := log2(p

n) and log2E, which are constants, and we set
the variables x1 = df log2E, x2 = dg log2E, y1 = max(1, log2‖g‖) et y2 = max(1, log2‖f‖). Hence the problem
becomes:

subject to x1y1 + x2y2 ≥ K
y1, y2 ≥ 1

x1, x2 ≥ log2E
minimize x1 + y1 + x2 + y2.

(4)

step 3 Put F (x1, y1, x2, y2) = x1y1 + x2y2 and G(x1, y1, x2, y2) = x1 + y1 + x2 + y2. The local extrema of G
on an set where F is constant are obtained in one of the three situations:

1. ∇F ‖ ∇G
2. One of the variables is on the boundary (y1 = 1, y2 = 1, x1 = log2E or x2 = log2E), say y1 = 1, and
∇F |{y1=1}‖ ∇G |{y1=1}

3. Two or more variables are on the boundary.

We check that all extrema of points (i) and (ii) are maxima, so we are left with case (iii) which further divides in four
cases:

1. y1 = y2 = 1 i.e. log2‖f‖ ≤ 1 and log2‖g‖ ≤ 1;
2. x1 = x2 = log2E i.e. df = dg = 1;
3. y2 = 1 and x1 = log2E i.e. log2‖f‖ ≤ 1 and df = 1 or vice-versa.
4. x1 = log2E and y1 = 1 or the same for x2 and y2. This is the NFS case with log2‖f‖ = dg = 1.

In case (1), the minimum is x1 + x2 + y1 + y2 = K + 2 while in the case (2) the minimum is 2 log2E +K/ log2E.
In case (3) we find that the optimized expression becomes x2 + (K − x2 log2E) + 1 + log2E whose minimum is
obtained when y1 = 1 and we are again in case (2). Finally, in case (4) we have x2y2 = K− 1 and we have to minimize
2 + x2 + y2. This happens when x2 = y2 =

√
K − 1 and x1 + y1 + x2 + y2 = 2 + 2

√
K − 1.

We can now compare the local minima and conclude that the global minimum is

minG |{F=K}= 2 + 2
√
K − 1.

Note that the minimum is independent on the value of E.
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step 4 It is classical to estimate the cost of NFS as Bρ( log2N
log2 B

) + B2 where N is the norms product and ρ is

Dickman’s function, which is 2+2
√
K − 1 ≈ 2

√
log2(p

n). Then the classical analysis of NFS leads to the complexity
of SexTNFS: L[32]1+o(1). �

Fried et al [FGHT17] noted that a multiple variant of SexTNFS is impossible, so it is safe to say that Figure 1
cannot contain a curve below the one used in this article to approximate the security of parametrized pairings.

Practical improvements will continue to come but they will modify only the o(1) term. A hypothetical algorithm
which would beat SexTNFS needs to produce relations faster than by enumerating all elements of a sieving space, as
it happened in small characteristic with pinpointing, or it would have to completely abandon the NFS diagram. Such
an algorithm would be a great discontinuity, comparable to a possible sub-exponential algorithm for DLP on elliptic
curves.
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